2.1 a) Nonlinear because of the yi term. b) Nonlinear because of the sin y term. c)
Nonlinear because of the ,/y term. d) Variable coefficient, but Linear. e) Nonlinear because
of the sin y term. f) Variable coefficient, but linear.



2.2 a)

4/ dx—S/ tdt

=2 t2
(1) +32
b)
5/ dm—2/ e 4 dt
=31-0.1e ¥
c) Let v = .
v t
3/ dv:5/ tdt
0
dx 5
vt) =G =7+ 5t
/dxz/ 7T+ —t°) dt
2 0 6
z(t) = 2+7t+3t3
N 18
d) Let v = .

v ¢
4/ dv:?/ e 2t dt
2 0
7

t /93 7
dx = — 2t> dt
/ o /0(8 8
5T 23T
x(t) TRERET:

e) ¢ = Cy, but £(0) = 5, so C1 = 5. & = 5t + Cq, but 2(0) = 2, so C, = 2. Thus
T = 5t + 2.



2.3 a)

/xdx/tdtt
3 25—522  Jo

z dzx NG NG 3v5
/ ———— = — |arctanh | —— | — arctanh [ — =t
3 25 — b2 25 5 5

C = arctanh (3\/5>

Let

5

Solve for z to obtain

z = V5 tanh(5V/5t + C)
b)

x dx td
_ t— ¢
10 36 + 422 ,/0

1 x|
—tan " -| =t
12 3110

z(t) = 3 tan(12t + C) C =tan~! ?

T gdx t
/ :/ dt
4 Dr+25 0

T

7 —In(z + 5)

4
= :g—ln(x+5)—g+ln9=t

4
x—5In(x+5)=5t+4—-5In9

So a closed form solution does not exist.

(continued on the next page)



Problem 2.3 continued:

d)



2.4 From the transform definition, we have

T
L]mt] —Thm [/ mite” Stdt] =m hm [/ te_Stdt]

The method of integration by parts states that

T . T
/ udv:uv|o—/ vdu
0 0

Choosing u =t and dv = e *'dt, we have du = dt, v = —e~ 5! /s, and

T T _—st
- / € dt]
0o —S§

0

T—oo T—oo —S

T efst
Lmt] =m lim / te Stdt| =m lim |t
0

T—o00

efst
=m lim |[¢

because, if we choose the real part of s to be positive, then

lim Te T =0

T—o00



2.5 From the transform definition, we have

T
L[t?] = lim t2estdt
T—oo |.Jo

The method of integration by parts states that

T . T
/ udv:uv|o—/ vdu
0 0

Choosing u = t? and dv = e~*'dt, we have du = 2t dt, v = —e~*!/s, and

T efst T T efst
L[t}] = lim / t2e~stdt| = lim | #? — / 2t dt
T—oo |.Jo T—o00 —S 0 0o —S

S T—o00 S

—st 2 T —st
= lim [—TQG + = / testdt] = lim [—TQG
s Jo

2

g3

because, if we choose the real part of s to be positive, then,

lim T2e T =0
T—o0



2.6 a)

b) 6 1
X&) = Y o3
¢) From Property 8,
X(s) = — diis)
where y(t) = e3¢ sin 5¢. Thus
) )
V) = G a255 52406534
dY(s) _ 10s+30
ds (s2 + 6s + 34)?
Hhos X(s) = 10530

(s2 4 6s + 34)2
d) X(s) = e ?*G(s), where g(t) = t. Thus G(s) = 1/s% and




2.7
f(t) = Bus(t) — Tus(t — 6) + 2us(t — 14)

Thus 6 »
5 —0s — S

F(s) =2 —75— 425
S S S




2 sin 3t

5
4 cos 2t + 3 sin 2t

2¢ ' sin 3t
? B 5673t
3 3




5 cos(31)

o3t _ o3¢

5—15te 3t — 5e 3¢

2

13

—2t 2 sin 3t
2e (cos 3t+%)

13

5 — 5 cos 2t

5t sin 2t



2.10 a) . .
2(04) = lm s375 =3

$(OO):£EI%)83S+7:O
b)
10
= lim s-s " =0
#(0+) o0 352 + 75 1 4
10

#(o0) = s e 72 O



2.11 a)

51 31 1
X(s) = o= 1+ 2=
) =357 3553
5 31 _.
x(t):§+§e*3t
c)
1 1 13 1
X(s) = —— -2
(5) 3s+2+3s+5
1 13
z(t) = —gefzt + ge*St
d)
52 51 51 5 1

X = — e —— — — N
)= 211 852 325 3std

)
5 5 5
gt — + 76_4t

wt) =gt =35+ 33

(continued on the next page)



Problem 2.11 continued:

e)
21 131 13 1
X(s)= 20 422 _ =2
R
213 13
olt) = 5t+ 55 — o55¢
f)
31 1 79 1 79 1

X(s) = —= =
O == TGra2 T 6533 16547
Rl pp——" 796—3t 9

x(t) = —Zte + 16 16¢



2.12 a)

Ts+2 5 s+3
e PN PR D R PO | P

or
19 5 s+3
X(s) = —— 7
N e R P e

19 _.
x(t) = —ge_‘ﬁ sin 5t + 7e ! cos 5t

b)
4s + 3 Cl 5 s+ 3
X(s) = =24c C
() S+32+5 s T Gr3Etn T BLr3Eis
or
31 127 5 3 3
X(s)= 22y i

345 170 (s +3)2+52 34 (s +3)2 + 52

3127

x(t) = 31 + T70° “sin 5t — 32146731‘/ cos Ht

(continued on the next page)



Problem 2.12 continued:
c)
45+ 9

[(s+3)2+52[(s +2)% + 42]

4 2
= C 5 L C s+3 LC ‘c s+

X(s) =

1(3+3)2+52 2(s+3)2+52 3(s+2)2+42 4(5+2)2+42
or

44 ) 19 s+ 3
205 (s+3)2+52  82(s+3)2+52
69 4 19 s+2
328 (s + 2)2 + 42 +83(s+2)2+42

X(s) =

44 19 69 19
z(t) = *ﬁe_gt sin 5t — @6_& cos 5t + @6_% sin 4t + 8—26_2t cos 4t

1 1 1
— 18.75—— +21.12
s+ 2 8758+4+ 55+6

z(t) = 2.625e~ 2 — 18.75¢ 4 4+ 21.125¢ 6

X(s) = 2.625



2.13 a) @ = 7t/5

x 7 t
dac:f/tdt
/3 5 Jo

7
z(t) = EtQ +3

/I dz—B/te_E’tdt
4 4 Jo
3

2(t) = o (1) +4

b) & = 3e7% /4

c) & =4t)7 t
(1) — #(0) = ‘71/0 Lt
4

i(t) = ﬁtQ +5

: dx:/t <4t2+5) dt
3 o \14
z(t) = L3 a3
42
d) & =8e4/3
#(t) — #(0) = 8/t et gt
3Jo

1
(t) = 8 -
3 12
x t 1
/ d:c:/ <7 — 86_4t> dt
3 0 3 12
1 1 1
z(t) = LU

3 6 6



2.14 a) The root is —7/5 and the form is z(t) = Ce™™/>. With z(0) = 4, C = 4 and
x(t) = 4e~ /5

b) The root is —7/5 and the form is x(t) = Cre™ ™/ + Cy. At steady state, x = 15/7 =
Cy. With z(0) =0, C1 = —15/7. Thus

z(t) = 1—75 (1 — e*7t/5)

¢) The root is —7/5 and the form is z(t) = C1e~"/° + Cy. At steady state, z = 15/7 =
Cy. With z(0) =4, C; = 13/7. Thus
13

2(t) = = (1+¢7°)

4

sX(s) —x(0)+7X(s) = 2

5s? +4 4 4 249
X(8)= g =g =
)= 2657 " 72 BT e

4,4 219 o



2.15 a) The roots are —7 and —3. The form is
z(t) = Cre” ™ + Coe™™

Evaluating C] and Cs; for the initial conditions gives
o) = et B
b) The roots are —7 and —7. The form is
z(t) = Cre™ ™ + Cote™ ™
Evaluating C] and Cs; for the initial conditions gives
z(t) =e Tt 10te” "
c¢) The roots are —7 & 3j. The form is
x(t) = Cre” " sin 3t 4+ Che™ " cos 3t

Evaluating C and Cs for the initial conditions gives

20
x(t) = ge_n sin 3t + 4e~ " cos 3t



2.16 a)

b)
L Be N 76te 2t LT
5 5 5

c)
x=23sin 4t — 4 cos 4t + 9

d)

. 16 sin 5te3"
_|_ e

2
5 +

x =3 cos bte >



2.17 a) The roots are —3 and —7. The form is
.r(t) = 016—315 + 026_7t + C3

At steady state, z = 5/63 so C3 = 5/63. Evaluating C; and Cj for the initial conditions
gives

5 5 5
) = —— —3t & =Tt v
) =—g¢ "ttt

b) The roots are —7 and —7. The form is
x(t) = Cre ™ + Cote™ ™ + C3

At steady state, x = 98/49 = 2 so C3 = 2. Evaluating Cy and Cy for the initial conditions
gives
z(t) = =27 — 1dte " 42

c¢) The roots are —7 £ 3j. The form is
z(t) = Cre” " sin 3t + Cae™ ™" cos 3t + Cy

At steady state, z = 174/58 = 3 so C3 = 3. Evaluating C; and Cs for the initial conditions
gives
x(t) = —7e " sin 3t —3e" " cos 3t + 3



2.18 a)
60

X(s)= ——
)= Tz 10

x =152 — 156

b)
288
X(s)= — 2
)= 2 1 1ma
r = 16v3e 5" sin 6v/3t
c)
147
X(g) = — '
(5)= 2119
x =21 sin 7t
d)
170
X(s)=— "2
(5) = 5 14s 185

85e~ " sin 6t
3

xTr =



2.19 a) . © 6

s(s+5) " 55 5545
6 o5t
o(t) = 5 (1-¢7)

4 41 41

s+3)(s+8) bHs+3 5s+8

x(t) = % (e_?’t - 6_8t>

8s+5 1 845 21 1 +4j 1
252 4+20s+48 2(s+4)(s+6)  4s+4 4s+6
27 o4t 43 —6t

d) The roots are s = —4 + 105.

ds 413 4s+13 10 . 5+ 4
2485+ 116 ' (s+4)2+102 (s +4)2+102 " *(s+4)2 + 102
3 10 s+4

2 4
0(+42+102  “GraZ+10?

3
z(t) = —1—06_4t sin 10t + 4e~* cos 10t



2.20 a)
3s+2 11 71 7 1

2(5+10) 552 255 255410

() = ~t 4 - (1—e7)

5 25
b)
5 151 5 1 +5 1
(s+4)2(s+1) 9 (s+4)2 9s+4 9s+1
15 5 D
x(t) = —Ete_“ - 56_415 + §€_t
c)
SHs+2) 257 48 8s 8s+42
_52 1 3 3—2t
x(t)—4t +4t+8 86

s'+s+6 1 L1111 11
si(s+2) st 3 282 4s  4ds+2
1 1 L1 1 5

)t B e e




2.21 a)
BlsX(s) =2 +3X(s) = —+

108 +10s* +2  2s%42s°42/5 21 101 1401 86 1

X = — - - - _ - - - -
)= 55613 B(s+3/5) 35 90 05 275135
_ Ll 10 140 86 35
=3 =gt 5 — ¢
b) 6 1
4[sX (s) — 5] + 7X(s) =
[sX(s) = 5] + 7X(s) (s+5)2+s+3
12083 4+ 26152 + 111 154
X(s) _ 0s° + 261s° + 6s + 1543

4 (s+5)2(s+7/4)(s+3)
17 24 1 9% 1 18056 1 4 1

1| 135152 169515 845 s+7/4 5s+3

x(t) — 72[4;6—515 . %6—515 45146—7t/4 . 16—315
13 169 845 )

(continued on the next page)



Problem 2.21 continued:

¢) This simple-looking problem actually requires quite a lot of algebra to find the solu-
tion, and thus it serves as a good motivating example of the convenience of using MATLAB.
The algebraic complexity is due to a pair of repeated complex roots.

First obtain the transform of the forcing function. Let f(t) = te=3'sin 5¢. From Prop-
erty 8,

dY (s)
F(s) = —
(s) Is
where y(t) = e 3! sin 5¢. Thus
) 5
Y — =
)= i3 " 91613
dY(s)  10s+30
ds —  (s2+6s+34)2
Th
w 105 + 30
F(s) = (1)

(s2 4 6s + 34)2

(continued on the next page)



Problem 2.21 continued:

Using the same technique, we find that the transform of te=3 cos 5t is

252 + 125 + 18 1 @)
(s246s+34)2 s2+6s+ 34
This fact will be useful in finding the forced response.
From the differential equation,
10s + 30

A[s*X (s) — 10s + 2] + 3X (s) = F(s) = (5 + 65 + 30)2

Solve for X (s).

_405—8+ 10s 4+ 30

482 +3 (s +3)2 + 25]2(4s2 + 3)
The free response is given by the first fraction, and is

V3 V3

4 .
Tfree(t) = —ﬁ sin Tt + 10 cos Tt = —2.3094 sin 0.866¢ + 10 cos 0.866t

X(s)

The forced response is given by the second fraction, which can be expressed as

2.55 4+ 7.5
[(s+3)% + 25]2(s% + 3/4)

(4)

(continued on the next page)

3)



Problem 2.21 continued:

The roots of this are s = +3j+/3/2 and the repeated pair s = —3 & 5j. Thus, referring
to (1), (2), and (3), we see that the form of the forced response will be

Tforced (t) = Cite 3t sin 5t + Cote 3 cos bt
+ Cse 3tsin 5t + Cye 3! cos 5t
+

V3

C5 sin ?t + C cos 7t (5)

The forced response can be obtained several ways. 1) You can substitute the form (5)
into the differential equation and use the initial conditions to obtain equations for the C;
coefficients. 2) You can use (1) and (2) to create a partial fraction expansion of (4) in terms
of the complex factors. 3) You can perform an expansion in terms of the six roots, of the
form

Ay N As N As N Ay
(s+3+55)2 s+3+4+55 (s+3—-55)?% s+3-—-5j
\/§A5/2 A6S
s243/4  s2+43/4

+

4) You can use the MATLAB residue function.
The solution for the forced response is

Tforced (t) = —0.0034te 3t sin 5t 4 0.0066te > cos 5t
0.0026e 3! sin 5t + 2.308 x 10~ %3 cos 5t
4+ 0.00796 sin 0.866t — 2.308 x 10~* cos 0.866t

The initial condition #(0) = 0 is not exactly satisfied by this expression because of the
limited number of digits used to display it.



2.22 The denominator roots are s = —3 and s = —5, which are distinct.

denominator so that the highest coefficients of s in each factor are unity:

7s+4 1 7s+4
XS)=—r———=c | ————

252 +16s+30 2 |(s+3)(s+5)
The partial-fraction expansion has the form

1[ s+ 4 :| 1 (s
- — +
2 [(s+3)(s+5) s+3 s+5

X(s) =

Using the coefficient formula, we obtain

s+ 4 o s+ 4 __H
) _s—>73

Ci = lim [(3—1—3)2

Sy 13)(15 25 +5)) 4
. 7s+4 . 7s+4 31
Cz = lim, {(5 ) )+ 5)] e [2(5 + 3)} T4

(continued on the next page)

Factor the



Problem 2.22 continued:
Using the LCD method we have

7s+4 &) Cy 01(S+5)+CQ(8+3)

1
2(5+3)(s+5) 543 545 (543)(545)

(Cl + CQ)S +5C1 + 3C,
(s+3)(s+5)
Comparing numerators, we see that C; + Co = 7/2 and 5C; + 3Cy = 4/2 = 2, which give
Cy1 = —17/4 and Cy = 31/4.

The inverse transform is

17 31
x(t) = Cre 3t 4 Che ™™ = — 3t 4 T
4 4
In this example the LCD method requires more algebra, including the solution of two

equations for the two unknowns C; and Cs.



2.23 a) The roots are —3 and —5. The form of the free response is
z(t) = Are 3t 4 Age™
Evaluating this with the given initial conditions gives
x(t) = 27e7 3 — 17e 75
The steady-state solution is xss = 30/15 = 2. Thus the form of the forced response is
z(t) = 2+ Bie %" + Boe
Evaluating this with zero initial conditions gives
z(t) =2 — 5e73 4 37
The total response is the sum of the free and the forced response. It is
z(t) =24 2273 — 147!

The transient response consists of the two exponential terms.

(continued on the next page)



Problem 2.23 continued:

b) The roots are —5 and —5. The form of the free response is
z(t) = Are ™ 4 Agte™
Evaluating this with the given initial conditions gives
z(t) = e + 9te ™
The steady-state solution is xss = 75/25 = 3. Thus the form of the forced response is
z(t) = 3+ Bie ' + Byte™™
Evaluating this with zero initial conditions gives
z(t) =3 —3e 5 — 15te™™
The total response is the sum of the free and the forced response. It is
x(t) =3 — 2 — 6te™™

The transient response consists of the two exponential terms.

(continued on the next page)



Problem 2.23 continued:
c) The roots are £55. The form of the free response is
x(t) = Ay sin 5t + Ay cos 5t

Evaluating this with the given initial conditions gives
4 .
z(t) = 7 sin 5t + 10 cos 5t

The form of the forced response is
x(t) = By + By sin 5t + B cos 5t

Thus the entire forced response is the steady-state forced response. There is no transient
forced response. Evaluating this function with zero initial conditions shows that By = 0
and By = —B;. Thus

x(t) = By — By cos bt

Substituting this into the differential equation shows that By = 4 and the forced response
is
x(t) =4 —4 cos bt

The total response is the sum of the free and the forced response. It is
4
z(t) =4+ 6 cos 5t+5 sin 5t

The entire response is the steady-state response. There is no transient response.

(continued on the next page)



Problem 2.23 continued:

d) The roots are —4 & 7;j. The form of the free response is
z(t) = Aje* sin Tt + Age ™ cos Tt

Evaluating this with the given initial conditions gives

44
x(t) = 76_4'5 sin 7t 4 10e ™% cos 7t

The form of the forced response is
x(t) = By 4+ Boe * sin Tt + Bge 4 cos Tt

The steady-state solution is xss = 130/65 = 2. Thus By = 2. Evaluating this function with
zero initial conditions shows that Bs = —8/7 and B3 = —2. Thus the forced response is

8
z(t) =2 — ?e_‘“ sin 7t — 2e 4 cos Tt
The total response is the sum of the free and the forced response. It is
36 4 —4t
x(t) =2+ —e " sin Tt +8e ™ cos Tt

The transient response consists of the two exponential terms.



2.24 a) The root is s = 5/3, which is positive. So the model is unstable.

b) The roots are s = 5 and —2, one of which is positive. So the model is unstable.

c¢) The roots are s = 3 + 55, whose real part is positive. So the model is unstable.

d) The root is s = 0, so the model is neutrally stable.

e) The roots are s = £25, whose real part is zero. So the model is neutrally stable.

f) The roots are s = 0 and —5, one of which is zero and the other is negative. So the
model is neutrally stable.



2.25 a) The system is stable if both of its roots are real and negative or if the roots are
complex with negative real parts. Assuming that m # 0, we can divide the characteristic
equation by m to obtain

k
P2+l N 2 astb=0
m m

where a = ¢/m and b = k/m. The roots are given by the quadratic formula:

—a++va?—4b
2

S =

(continued on the next page)



Problem 2.25 continued:

Thus the condition that m, ¢, and k have the same sign is equivalent to a > 0 and b > 0.
There are three cases to be considered:

1. Complex roots (a? — 4b < 0). In this case the real part of both roots is —a/2 and is
negative if a > 0.

2. Repeated, real roots (a? —4b = 0). In this case both roots are —a/2 and are negative
if a > 0.

3. Distinct, real roots (a? — 4b > 0). Let the two roots be denoted r; and ro. We can
factor the characteristic equation as s? + as +b = (s — r1)(s — r2) = 0. Expanding
this gives

(s —r1)(s—r2) =" = (r1 +r2)s + 112 =0

Comparing the two forms shows that
rire=5b (1) and rn+rmn=-a (2

If b > 0, condition (1) shows that both roots have the same sign. If a < 0, condition
(2) shows that the roots must be negative. Therefore, if the roots are distinct and
real, the roots will be negative if ¢ > 0 and b > 0.

b) Neutral stability occurs if either 1) both roots are imaginary or 2) one root is zero
while the other root is negative. Imaginary roots occur when a = 0 (the roots are s = i\/l;)
In this case the free response is a constant-amplitude oscillation. Case 2 occurs when b =0
and a > 0 (the roots are s = 0 and s = —a). In this case the free response decays to a
non-zero constant.



2.26a)7=5
b) =4
c)T=3
d) The roots is s = 3/8, so the model is unstable, so no time constant is defined.



2.27 a) The root is s = —4/13, so the model is stable, and zs; = 16/4 = 4. Since 7 = 13/4,
it takes about 47 = 13 to reach steady state.

b) The root is s = —4/13, so the model is stable, and xss = 16/4 = 4. Since 7 = 13/4,
it takes about 47 = 13 to reach steady state.

c¢) The root is s = 7/15, so the model is unstable, and no steady state exists.



2.28 1)
Xy SFLE _1s¥15 G
C4s+1s 4s+1/4s s

01 = 5, CQ = —15/4, SO

1
z(t) =5— 1564/4

__ s 1 1 5 G
C4s+1s 4s+1/4s s

z(t) =5 — pe /4

Co
s+1/4

Co
s+1/4




2.29




2.30 a)

= — = wn: —_— =
¢ 21/40 1
s=-2+6j
so7=1/2 and wg = 6.
b)
s =14 4.79585

So the model is oscillatory but unstable, and thus ( and 7 are not defined.

24
Wy, = ’/T =2V/6  wy = 4.7958

20
= = 1
¢ 24/100

s =—10,—-10

so 7 = 1/10. Since the roots are real, the response is not oscillatory, and w,, and wy have
no meaning.

d) The root is s = —10, so 7 = 1/10. Since the model is first order, (, w, and wy have
no meaning.



2.31 a) The roots are

o —10d + /100d% — 4(29)d?
- 2

= (=5 +2j)d

So if d > 0, the real part is negative, and the system is stable.
b)
10d 10

T 2v2082 229

So the free response is always oscillatory.

<1

¢



2.32 a)

X(s) 15
F(s) 5547
The root is s = —7/5.
b)
X(s) 5
F(s)  3s%2+430s+63
The roots are s = —7 and s = —3.
c)
X(s) 4
F(s) s2+10s+21
The roots are s = —7 and s = —3.
d)
X(s) 7
F(s) 82+ 14s+49
The roots are s = —7 and s = —7.
e)

X(s) 6s + 4
F(s) s2+14s+58

The roots are s = —7 + 3j.
f)
X(s) 4s+15
F(s) 5s+7

The root is s = —7/5.



2.33 Transform each equation using zero initial conditions.
3sX(s) =Y(s)

sY(s) = F(s) —3Y(s) — 15X (s)
Solve for X (s)/F(s) and Y (s)/F(s).

X(s) 1
F(s)  3s2+4+9s+15
Y(s) 3s
F(s) 3s2+9s+15



2.34 Transform each equation using zero initial conditions.
sX(s) = —2X(s) 4+ 5Y(s)

sY(s) = F(s) —6Y(s) —4X(s)
Solve for X (s)/F(s) and Y (s)/F(s).

52+ 8s+ 32

()
()
Y (s) s+2
F(s)



2.35 a) Transform both equations to obtain 4sX(s) = Y (s) and s(Y (s) = F(s) —3Y (s) —

12X (s). Eliminate X (s) to obtain

b) The roots are
-3+3
§=———
2
Thus
2 3 V3
T = — C = —= —
3 2v/3 2
3
) The response oscillates with a frequency of wy = v/3/2 and essentially disappears for
t>4r =8/3.
d) With F(s) =1/s,
1 1 1 1
X = — = —
() 4s5(s2+3s+3) 4s[(s+3)2+ 2]
or
X(s) = C1(3+%)+C2§ Cs
(s+2)2+2 s

—1/12 and Cy = —/3/12. Thus

where Cl = —03 =
1 V3 \/3 f
_-st2 [ _ _
z(t)=e ( 13 €05 5 t 5 >+

12



2.36 a) Transform both equations to obtain
45X (s) = —4X(s) +2Y(s) + F(s)
sY(s) = =9Y (s) — 5X(s) + G(s)
These can be solved using Cramer’s rule to obtan

(s) s+9
(s)  4s2+40s+46
(s) _

[ 5

S 2
(s)  4s2+40s+ 46

b) The roots are s = —1.3258 and s = —8.6742. The time constants are 7 = 0.7543 and
7 =0.1153. The response does not oscillate.

c¢) The free response is governed by the dominant time constant, which is 7 = 0.7543.
The response is essentially zero for t > 47 = 3.0172.

Ql



2.37 a)
T[sX(s) —3]+5X(s) =4

25 25/7
X = =
() 7s+5 s+5/7

25 57
)=
x(t) —e
Note that this gives z(0+) = 25/7. From the initial value theorem

25/7 25

2(04) = i s = =

which is not the same as xz(0—).
b)
(352 +30s + 63)X(s) =5
B 5 B 5/3 5 1 5 1
© 3s2+30s+63 s2+10s+21 12s+3 12s+7

x(t) = % (e_?’t — e_7t)

X(s)

From the initial value theorem

. 5/3
2(0+) = 811{20832 +10s 421

which is the same as x(0—). Also

5/3 5
P (0+) = i 2. 92
HOH) = I s s s 21~ 3

which is not the same as @(0—).

(continued on the next page)



Problem 2.37 continued:
c)
s2X(s) — 25 — 3+ 14[s X (s) — 2] + 49X (s) = 3

25 + 34 1 1
X(s) = — 20 2
St s Vi el pa g R

x(t) = 20te™ "t 277

From the initial value theorem

25+ 35
z(0+) 5100 * 52 + 145 4+ 49
which is the same as z(0—). However, the initial value theorem is invalid for computing
#(0+) and gives an undefined result because the orders of the numerator and denominator
of sX(s) are equal.
d)
§2X(s) —4s — T+ 14[s X (s) — 4] + 58X (s) = 4
4s + 67 4s + 67 3 s+7

= =13 4
P s+58 (517243 A4 R 4P
z(t) = 13~ " sin 3t + 4e” " cos 3t

X(s) =

From the initial value theorem

4s + 67
0+) = li - =
00 = s s + 58
which is the same as z(0—). However, the initial value theorem is invalid for computing
#(0+) and gives an undefined result because the order of the numerator of sX (s) is greater
than the denominator.



2.38 a)
7[sX(s) —3]+5X(s) = 43% =4

25  25/7

X(s) = —
() 7s+5 s+5/7

x(t) = ?e*‘r’tﬂ

From the initial value theorem

25/7 25

2(04) = i s = =

which is not the same as z(0—).
b)

15X (5) — 3] +5X(s) = 45~ +

X(s) = 25546 1 25546 61 83 1
~ s(7s+5)  Ts(s+5/7) 5s  35s+5/7
6,8 57
t:, -
x(t) 5+35e

which gives x(0+) = 25/7, which is not the same as x(0—). However, the initial value
theorem is invalid for computing z(0+) and gives an undefined result because the orders of
the numerator and denominator of X(s) are equal.

(continued on the next page)



Problem 2.38 continued:

)
352X (s) — 25 — 3] + 30[s X (s) — 2] + 63X (s) = 432 —4

1 65473 55 1 31 1
Xs)=cr—FF—F2="7——>——=
3(s+3)(s+7) 12s+3 12547
I T L
z(t) = 1€ 1€
This gives 2(0) = 2, which is the same as z(0—), and #(0) = 13/2, which is not the same
as (0—).
From the initial value theorem
1
#(04) = lim 6s+73

= 3 (5+3)(s+7)

which is the same as z(0—). However, the initial value theorem is invalid for computing
#(04) and gives an undefined result because the order of the numerator of sX(s) is greater
than the denominator.

(continued on the next page)



Problem 2.38 continued:

d)
352X (s) — 45 — 7] + 30[sX (s) — 4] + 63X (5) = ds +

1125 +1455+6
~ 3s(s2+10s +21)

z(t) = 0.0952 + 8.9167¢ 3! — 5.0119¢ "

This gives 2(0) = 4, which is the same as z(0—), and #(0) = 8.3332, which is not the same
as ©(0—).

The initial value theorem gives 2:(0+) = 4 but is invalid for computing #(0+) because
the orders of the numerator and denominator of sX(s) are equal.

X(s)

1 1 1
=0.0952—- +8.9167—— — 5.0119——
s s+ 3 s+ 7



2.39 Transform each equation.

3[sX(s) = 5] =Y(s)

§¥(s) = 10 = % 3V (s) — 15X (s)

Solve for X (s) and Y'(s).

_ 15s* +55s+4  115s% +55s +4
© 3534952+ 155 3 s(s2+3s+5)

X(s)

30s — 213 1 30s — 213
Y(s) = =

3s2+9s+15 3s2+3s+5
The denominator roots are s = —1.5 £ 1.658;. Thus

X(S)_q+1[ 1.658 . s+1.5 }
B 31 ' (s+152+275  *(s+152+275
and ST JiT
_ L b sy 11 o (VI
x(t) = 1 + T 781 cos 5 t] +313V11sin 5 t
Also,
Y (s) = 1.658 N s+ 1.5
T s+ 1524275 *(s+ 1524275

and

y(t) = %67315/2 [55 cos <\/2ﬁt> — 86111 sin <\/2ﬁt>]



2.40 Transform each equation.
sX(s)—5=—-2X(s)+5Y(s)

10

sY(s) —2=—-6Y(s) —4X(s) + ~

Solve for X (s) and Y(s).
_ 5s% +40s + 50

(5) = 53 4+ 852 4 325
252 — 6s + 20

Y(s)= 22— 28T
(5) 53 + 852 + 32s

The denominator roots are s = 0 and s = —4 +44. Thus
1 4 s+4
X = —+0———F + 03—
() s PTGt
_ 25 % 45 std
165 16 (s+4)2+42 16 (s +4)2 + 42
25 55 55
x(t) = 6 + Ee_‘“ sin 4t + Ee‘“ cos 4t
Also,
1 4 s+4
Y = —+0—F——F + 03—
(5) s TGy TG
5 33 4 11 s+4

8s 8 (s+4)2+42 + 8 (s+4)2+42

11
y(t) = S % ~Asin 4t + §6_4t cos 4t



2.41 Transforming both sides of the equation we obtain

1

Y (s) = sy(0) = §(0) + ¥ () = 15

which gives

(s+1) [sy(0) +9(0)] +1 _ s?y(0) + [y(0) +§(0)] + y(0) +1

Y(s) = (s+1)(s2+1) - (s+1)(s2+ 1)

This can be expanded as follows.

1 1

s
Y(s)=C C C
(5) 154—1+ 282—|—1+ 3241

We find the coefficients following the usual procedure and obtain C, = 1/2, Co = 3(0)+1/2,
and C3 = y(0) — 1/2. Thus the solution is

y(t) = %e*t + [y'(O) + ;} sin t + {y(()) - ﬂ cos t

(continued on the next page)



Problem 2.41 continued:

Because the initial values can be arbitrary, the general form of the solution is
1 _, )
y(t) = ¢ + Aysint+ Apcos t (1)

This form can be used to obtain a solution for cases where y(t) or y(t) are specified at points
other than ¢t = 0. For example, suppose we are given that y(0) = 5/2 and y(7/2) = 3. Then
evaluation of equation (1) at t = 0 and at ¢t = 7/2 gives

1 ) m 1

= — A = — — — — 77"/2 A —
sO) =5 +ae=3  y(3) =5 A=

The solution of these two equations is A1 = 3 — e*”/2/2 = 2.896 and Ay = 2, and the
solution of the differential equation is

1
y(t) = ie_t +2.896sin t 4+ 2cos t



2.42 (a) For nonzero initial conditions, the transform gives

XG0 1500 5 150

s
" 2(0) + 5%i(0)
s?°x(0) +s°2(0)+3 C; Oy 2 s
X(s) = =—4+=4C C
() s2(s2 +4) 25T 382+4+ Y244

The solution form is thus
x(t) = Cit + Cy + C5 sin 2t + Cy cos 2t

which can be used even if the boundary conditions are not specified at ¢t = 0.
(b) The form from part (a) satisfies the differential equation if C; = 3/4 and Cy = 0.
From z(0) = 10, we obtain Cy = 10. From z(5) = 30, we obtain Cs = —63.675. Thus

x(t) = %t — 63.675 sin 2t 4 10 cos 2t



2.43 The denominator roots are s = —3 = 55 and s = £65. Thus we can express X (s) as

follows.
30

[(s +3) +5%] (s* + 62)

which can be expressed as the sum of terms that are proportional to entries 8 through 11
in Table 2.2.1.

X(s) =

LC s+ 3 6 s

X(s) = 1
(s)=C erapre  Gare thare W

)
"(s+3)2 452
We can obtain the coefficients by noting that X (s) can be written as

~ 5C1(s? + 6%) + Ca(s + 3) (s + 62) + 6C5 [(s + 3)2 4+ 5%] + Cys [(s + 3)* + 57
- [(5 4 3)% 4 5%] (5% + 62)

X(s) (2)

Comparing the numerators of equations (1) and (2), and collecting powers of s, we see that
(02 + 04)53 + (501 + 3Cy 4+ 6C5 + 604)52 + (3602 + 36C5 + 3404)5

+180C + 108Cy + 204C'5 = 30

or
Co+Cy=0 5C1 +3C5 +6C5+6C4, =0
36C5 + 36C5 + 34Cy =0 180C 4 108C5 + 204C's = 30
These are four equations in four unknowns. Note that the first equation gives Cy = —Cj.

Thus we can easily eliminate Cy from the equations and obtain a set of three equations in
three unknowns. The solution is C; = 6/65, Co = 9/65, and C3 = —1/130, and Cy = —9/65.

(continued on the next page)



Problem 2.43 continued:

The inverse transform is

z(t) = Cre 3 sin 5t + Cae > cos 5t + Cysin 6t + Cy cos 6t

6 9 1 9
= @e_?’t sin 5t + %6_% cos 5t — 130 sin 6t — o cos 6t



2.44 Transform the equation.

D
2
12 40)X(s) =3———
(s + 125 +40) X (s) 295
The characteristic roots are s = —6 4+ 25. Thus
15
X -
() (s2 + 25)(s2 + 125 + 40)
) s s+6
Ci—+C C Co———rF—
121 T e s T e ra T 62 14
or
1 ) 4 S 19 2 4 s+6

X(s) = — = e T S
)= 57 +25 1% 10610 T4 BGET62d

Thus

1 4 19 4
z(t) = = sin 5t — g5 €0 5t + me*& sin 2t + %67615 cos 2t



2.45 From the text example, the form A sin(wt 4+ ¢) has the transform

5 sin ¢ 4+ w cos ¢
§2 + w?

A

For this problem, w = 5. Comparing numerators gives
A(ssin ¢+ 5cos ¢p) =4s+9

Thus
Asing=4 BHAcos¢p=9

With A > 0, ¢ is seen to be in the first quadrant.

_, sin ¢ , 4/A .20
=t =4 — = 1.148 rad
o5 an 9/54 an 5 ra

() -

x(t) = 4.386 sin(5t + 1.148)

¢ = tan

Because sin? ¢ + cos? ¢ = 1,

which gives A = 4.386. Thus



2.46 Taking the transform of both sides of the equation and noting that both initial con-
ditions are zero, we obtain
6

s2X(s) + 65X (s) + 34X (s) = 5m

Solve for X (s).
30

X = @ T 6

The inverse transform is

6 9 1 9
x(t) = %ef?’t sin 5t + %67& cos bt — 130 sin 6t — 65 o8 6t



2.47 Transform the equation.

10
(s 4+ 125 +40) X (s) = —
s
or, since the characteristic roots are s = —6 & 27,
10
X(s) = (1)

s[(s +6)% 4 22]
From the text example, the form Ae™% sin(wt + ¢) has the transform

ssin ¢+ a sin ¢ + w cos ¢

A (s+a)?+ w?

For this problem, a = 6 and w = 2. Thus

X(s) = 10 :g+02381n¢+6sin¢+2cos¢)

s[(s+6)2+22] s (s+6)% +22

or
X(s) = C1(s% + 125 +40) + Cas? sin ¢ + 6055 sin ¢ + 2Css cos ¢ @)
- s[(s +6)% + 2]

(continued on the next page)



Problem 2.47 continued:

Collecting terms and comparing the numerators of equations (1) and (2), we have
(C1 4 (5 sin (ﬁ)s2 + (12C1 + 6C4 sin ¢ + 2Cy cos ¢)s +40C; = 10

Thus comparing terms, we see that C; = 1/4 and

1
Z + 02 sin (;5 =0
34 6C5 sin ¢ +2C5 cos ¢ =0
So
Cy sing = ! C o= 3
2 8ing=—7 2 08 = —7
Thus ¢ is in the third quadrant and

—1/4
¢ = tan! 3;4 =0.322 + 7 = 3.463 rad

1 \2 3 \2
(4&)*(4@) =1

1
o(t) = 7+ 0.791e 75 sin(2t + 3.463)

Because sin? ¢ + cos? ¢ = 1,

which gives Cy = 0.791. Thus



2.48 Transform the equation.

F(s)
X(s) = )
() s2+8s+1
Thus
F(s) s+ 8s
F(s) = X(s) = F(s) = 2+8s+1 s2+8s+ 1F(S)
Because F(s) = 6/,
s2+8s 6 s+8 6

F —X = —_— = —
(5) (5) s24+8s+1s2 s248s+1s

From the final value theorem,

' ‘ s+8 6
fos = sy = T s[F(5) = X(s)] = lims 05 2 =8



2.49 The roots are s = —2 and —4. Thus

1—e 3
Y= e
Let 1 1/ 1 1
F(s) = (s +2)(s+4) T2 (M_ 8—|—4>

Ft) = % (e’% _ ef4t)

From Property 6 of the Laplace transform,

a(t) = % (6—215 . e—4t> o % [6—2(1&—3) - e—4(t—3)} ug(t — 3)



2.50
F(t) = %tus(t) - %(t — D)u,(t— D) + %(t — 9D)u,(t — 2D)

From Property 6 of the Laplace transform,

C 2C _p, C _op, C _Ds . —9Ds
F(s) -— D+we QD*DSQ(I—QeD—i—e 2D)

T Ds2  Ds? €



2.51 o o
f(t) = Btus(t) - B(t - D)us(t - D) - Cus(t - D)

From Property 6 of the Laplace transform,

c ¢ —Ds ge—Ds

Fls) =53~ pa® 5



2.52
f(t) = Mus(t) — 2Mus(t — T) + Mus(t — 27)

From Property 6,

M 2M M
F(s)=— — ——¢e Ts 4 —¢ 2
s

S S



2.53
P(t) = 3us(t) — 3us(t — 5)

From Property 6,

3 3
P _ 2 _ Y, —5s
(s) s s

_ P(s)  3(1—e ™) 3 1—e
(S)_4s+l_ s(ds+1)  4s(s+1/4)

Let

3 1 1 1

SCRS Frrs vkl Chrsvry
Then
F(t) =3 (1 - e*t/‘*)

Since

X(s) = F(s) (1- ™)
we have

2(t) = J(8) ~ F(t — 5us(t = 5) =3 (1 — ) = 8[1 - e I/ (¢ - 5)



2.54 Let 5 5
t 2t
t)=t+—+-=—
flt)=t+ 315
Then

F(s) 1 2 16 s*42s2416
S)=—+—4+—=————

2 g4 46 $6

From the differential equation,

F(s) s*+2s+16
s+1  s8(s+1)
16 16 18 18 19 19 19

4 g3 g2 s s+1

X(s) =

6 s5 s

Thus

2 5 2
x(t) = 11— §t4 + 3% — 9t* + 19t — 19 + 19¢"

On a plot of this and the solution obtained from the lower-order approximation, the two
solutions are practically indistinguishable.



2.55 From the derivative property of the Laplace transform, we know that
o0
Lli(t)] = / #(t)e " dt = sX (s) — 2(0)
0

Therefore

§—00 §—00

/Oe i(t)e st dt} } + 613& { /0 ‘ lim {j;(t) o5t dt”

The limits on € and s can be interchanged because s is independent of . Within the interval

[0,0+], e75! = 1, and so
€, . €. . —st
/0 i(t) dt]}—kelir& { /O lim [i(t)e dt}}

=2(0) + z()[I=0T + 0 = 2(04)

lim [sX(s)] = lim {:E(O) + /Oooi(t)e_St dt}

= lim z(0) + lim { lim

§—00 s—0 | e—0+

lim [sX(s)] = z(0) + lim { lim

§—00 §—00 | e—0+

This proves the theorem.



2.56 From the derivative property of the Laplace transform, we know that
o0
Lli(t)] = / #(t)e " dt = sX (s) — 2(0)
0

Therefore,

s—0 s—0

lirr(l) [sX(s)] = lim z(0) + lim [/ @(t)e s dt]
S— 0
= 2(0) +/ lim |(¢)e ™" dt] = (0) +/ (t) dt
0 s—0 0
because s is independent of ¢ and lim,_ge™ %" = 1. Thus

lim [sX (s)] = 2(0) + lim [ /0 T;'U(t) dt] = 2(0) + lim [2(t)i=]]

T—o0 T—o0

=z(0) + lim z(T) —z(0) = lim z(T) = lim z(t)

T—o00 T—o00 t—o0

This proves the theorem.



2.57 Let

Then

c [ /0 ") dt} — Llg(t)] = /O Lg(t)e dt

To use integration by parts we define u = g and dv = e~ *'dt, which give du = dg = z(t) dt
and v = —e %! /s. Thus

t —st [t=%° 0o ,—st
/ g(t)e=stat = Ie —/ C a(t)dt
0 —S =0 0 —S
1 oe]
=0+ 9(0) + - z(t)e S dt = 9(0) + (s)
S s Jo S S
- 1/93(15) af  + X8
S t=0 S

This proves the property.
If there is an impulse in z(t) at ¢ = 0, then g(0) equals the strength of the impulse. If
there is no impulse at t = 0, then g(0) = 0.



2.58 a)

[r,p,k] = residue([8,5],[2,20,48])

The result is r = [10.7500, -6.7500], p = [-6.0000, -4.0000], and k¥ = [ 1. The
solution is
x(t) = 10.75¢75 — 6.75¢™4

b)
[r,p,k] = residue([4,13],[1,8,116])
Theresultisr = [2.0000 - 0.1500i, 2.0000 + 0.1500i],p = [-4.0000 + 10.0000i,
-4.0000 - 10.0000i], and k = [ ]. The solution is
z(t) = (2 = 0.157)e 710t L (2 4 0.155)e( 471090

The solution is
z(t) = 2% (2 cos 10t + 0.15 sin 10t)

c)

[r,p,k] = residue([3,2],[1,10,0,0])

The result is r = [ -0.2800, 0.2800, 0.2000], p = [-10, O, O], and k = [ ]. The
solution is
z(t) = —0.28¢ 719 +0.28 + 0.2t

(continued on the next page)



Problem 2.58 continued:
d)

[r,p,k] residue([1,0,1,6],[1,2,0,0,0,0])

The result is r = [-0.2500, 0.2500, 0.5000, -1.0000, 3.0000],p =[ -2, O, O, O,
0], and k = [ ]. The solution is

1, 1
z(t) = —0.25¢%" 4 0.25 + 0.5t — 5152 + 5,53

e)
[r,p,k]

residue([4,3],[1,6,34,0])

The result is r = [-0.0441 - 0.3735i, -0.0441 + 0.3735i, 0.0882], p = [-3.0000
+ 5.0000i, -3.0000 - 5.0000i, 0], and k = [ 1.The solution is
z(t) = (—0.0441 — 0.3735;5)e( 342D (—0.0441 + 0.37355)e( 3759t 1 0.0882

The solution is

x(t) = 273 (—0.0441 cos 5t + 0.3735 sin 5¢) + 0.0882

(continued on the next page)



Problem 2.58 continued:
f)
[r,p,k] = residue([5,3,7],[1,12,44,48])
The result is r = [21.1250 -18.7500 2.6250], p = [ -6, -4, -2],and k = [ 1. The

solution is
z(t) = 21.125¢ 75" — 18.75¢ 4 + 2.625¢ 2



2.59 a)

[r,p,k] = residue(5,conv([1,8,16],[1,1]))
The result isr = [-0.5556, -1.6667, 0.5556], p = [-4.0000, -4.0000, -1.0000], k
= [ 1. The solution is
z(t) = —0.5556e 4 — 1.6667te 4 + 0.5556¢ "
b)
[r,p,k] = residue([4,9],conv([1,6,34],[1,4,20]))
Theresultisr = [-0.1159 + 0.1073i, -0.1159 - 0.1073i, 0.1159 - 0.1052i, 0.1159

+ 0.1052i],p = -3.0000 + 5.0000i, -3.0000 - 5.0000i, -2.0000 + 4.0000i, -2.0000
- 4.0000i], and k = [ 1. The solution is

z(t) = (—0.1159 + 0.10735)el 35t 4 (—0.1159 — 0.1073;)e( 32
4+ (0.1159 — 0.10525)e "2+t 4+ (0.1159 + 0.1052;)e( 249

The solution is

z(t) = 273 (—0.1159 cos 5t — 0.1073 sin 5t) + 2~ (0.1159 cos 4t + 0.1052 sin 4t)



2.60 a)

sys = tf(1,[3,21,30]);
step(sys)

b)

sys = t£(1,[5,20, 651);
step(sys)

c)

sys = t£([3,2],[4,32,60]);
step(sys)



2.61 a)

sys = tf(1,[3,21,30]);
impulse(sys)

b)

sys = t£(1,[5,20, 651);
impulse(sys)



2.62

sys = t£(5,[3,21,30]);
impulse(sys)



2.63

sys = t£(5,[3,21,30]);
step(sys)



2.64 a)

sys = tf(1,[3,21,301);
t = [0:0.001:1.5];

f = 5xt;

[x,t] = lsim(sys,f,t);
plot(t,x)

b)

sys = tf(1,[5,20,65]);
= [0:0.001:1.5];

f = 5xt;

[x,t] = lsim(sys,f,t);
plot(t,x)

sys = tf£([3,2],[4,32,60]);
t = [0:0.001:1.5];

f = bxt;

[x,t] = lsim(sys,f,t);
plot(t,x)



2.65 a)

sys = tf(1,[3,21,301);
t [0:0.001:6];

f 6*cos (3*t) ;

[x,t] = lsim(sys,f,t);
plot(t,x)

b)

sys = tf(1,[5,20,65]);
t = [0:0.001:6];

f = 6*cos(3*t);

[x,t] = lsim(sys,f,t);
plot(t,x)

c)

sys = t£([3,2],[4,32,60]);
t = [0:0.001:6];

f = 6*cos(3*t);

[x,t] = lsim(sys,f,t);
plot(t,x)



