Chapter 2 HOMEWORK SOLUTIONS

The problems in this chapter are intended to facilitate discussion in a very general sense about modeling, and engineering decision making. These problems do not have exact solutions. Those solutions provided are meant as examples.

2-1 Solution

Students might be asked to discuss the conflict that might exist between objectives, rank objectives, etc.

Services	Objectives
Trash Collection	 - Maximize quality of service (equity, regularity, etc.) - Maximize usage of capital equipment. - Minimize labor disputes. - Minimize cost excesses and overruns.
Municipal Water Supply	 Maximize equity in provision of water to community. Maximize public confidence in the quality and reliability of water supply. Minimize risk of water contamination. Minimize the risk of supply shortfalls during peak demand periods.
Fire Protection	 Maximize residential protection coverage. Maximize commercial protection coverage. Maximize readiness of personnel and equipment. Maximize coverage for co-located ambulance services. Maximize efficiency in scheduling personnel.
Swimming & Recreation	 Maximize citizen comfort and safety. Maximize equity in service among different user groups. Maximize maintenance effectiveness.
Street Cleaning	 Maximize equity of service across service area. Minimize deadhead travel (vehicle miles without performing service). Minimize interference with traffic. Minimize objectionable side effects of service (noise, dust, etc.).
Sewage Collection & Treatment	 Maximize treatment efficiency. Minimize risk to the environment and to people. Minimize objectionable side effects (odor, etc.). Minimize risk of collection system failure.

2-2 Solution

Scheduling of classrooms is different at different universities. Students may be interested in knowing, or discovering how scheduling is handled at your institution.

Possible Objectives	 Maximize the accommodation of most important classes. Minimize the number of unused seats during any class period. Minimize the distance that old professors must walk to class. Minimize the number of back-to-back courses for as many students as possible. Minimize distance between locations of back-to-back courses for a given student.
Possible Constraints	 University has a finite number of classrooms available. Classrooms have fixed capacities and locations on campus. Type of seating in each classroom may be fixed. Students may not take more than one class at a time. Instructors may not teach more than one class at a time. All required courses must be scheduled first.

2-3 Solution

Here are a few suggestions.

Decision	Objective(s)	Constraints
1. What to eat	 Maximize health. Maximize enjoyment. Minimize cost. Minimize time needed. 	 Choice of location to dine may be limited. Selection of food items to purchase or prepare. Time available for eating my be limited. Funds available for acquiring foods may be limited. Quality of food (nutrition, taste, etc.) may be limited.
2. How to get to work	 Maximize comfort. Minimize time required. Minimize cost. 	 Modes of travel might be limited, Choice of route might be constrained. Time available for travel might be limited.

3. What/when to study	- Maximize grades.- Maximize time.- Minimize time.	 Available time may be limited. Minimum amount of time may be necessary. Subjects may be of different importance.
4. How/when to exercise	- Maximize health Maximize enjoyment.	Need to coordinate with others (team, opponent, etc.).Cost.Time.
5. When to sleep	- Maximize rest.	 Amount of sleep time required. Need to awaken by a specific time. Time required for non-sleeping activities. Only 24 hours in a day.

2-4 Solution

Objectives	Mayor	Chamber	Residents	Relators	Merchants
Maximize residential coverage.	3	2	1	3	5
Maximize commercial coverage.	4	1	6	4	1
Minimize cost of acquiring land.	1	3	2	5	2
Minimize land development costs.	2	4	3	6	4
Minimize amount of land required.	5	6	4	2	3
Minimize value of land required.	6	5	5	l	6

Students might be asked to consider other objectives or constituents, or to discuss their own rankings for objectives.

2-5 Solution

Possible Objective	 Maximize equity in the distribution of routes across the population. Maximize resource usage. Minimize total lane-miles serviced within the community. Minimize the maximum customer wait time during peak demand periods. Minimum overlap in services.
Possible Constraints	 All residents must live within N blocks of a transit stop. No resident must have to wait more than M minutes for a bus during peak periods. Important routes must overlap at key transfer points. Drivers must be available to staff all scheduled routes. Maintenance funds may be limited.

2-6 Solution

Possible Constraints	 Students living more than N miles from school must be bussed. Not more than M buses are available to the school district. Classrooms (grade levels) must be balanced in each school remaining open. Cultural diversity must be preserved in schools remaining open.
Possible Objectives	 Maximize student safety (minimize total walking distance along hazardous streets). Minimize total student-miles traveled. Minimize the maximum distance traveled by the student traveling the furthest.
Possible Data Needs	 Location of each school. Location of each student or students by block group. Grade and cultural distribution by block group. Distance traveled (bus or walking) by each student or student group. Configuration of the community transportation network. Long-term demographic trend date.

2-7 Solution

Possible Constraints	 Land available for purchase or lease is limited (possible zoning restrictions, etc.). Total volume of generated waste now and in the future must be accommodated. Cost considerations may be restrictive. Equity considerations among user groups may be important.
Possible Objectives	 Maximize equity in quality of service and distribution of costs. Maximize impact on overall economic well-being of the community. Minimize cost of collection, treatment, or disposal (possibly separate costs). Minimize environmental impact (including nuisance impacts).
Possible Data Needs	 Location of available land for purchase or lease. Costs for collection, transport, treatment, etc. by each alternative considered. Demographic trends within the community.