
Chapter 2

Solutions to Selected Exercises

Section 2.1

2. For all x, for all y, x + y = y + x.

3. An isosceles trapezoid is a trapezoid with equal legs.

5. The medians of any triangle intersect at a single point.

6. If 0 < x < 1 and ε > 0, there exists a positive integer n satisfying xn < ε.

8. Let m and n be odd integers. Then there exist k1 and k2 such that m = 2k1+1 and n = 2k2+1.
Now

m + n = (2k1 + 1) + (2k2 + 1) = 2(k1 + k2 + 1).

Therefore, m + n is even.

9. Let m and n be even integers. Then there exist k1 and k2 such that m = 2k1 and n = 2k2.
Now

mn = (2k1)(2k2) = 2(2k1k2).

Therefore, mn is even.

11. Let m be an odd integer and n be an even integer. Then there exist k1 and k2 such that
m = 2k1 + 1 and n = 2k2. Now

mn = (2k1 + 1)(2k2) = 2(2k1k2 + k2).

Therefore, mn is even.

12. Let m and n be integers such that m and m+n are even. Then there exist k1 and k2 such that
m = 2k1 and m + n = 2k2. Now

n = (m + n) − m = 2k2 − 2k1 = 2(k2 − k1).

Therefore, n is even.

14. Let x and y be rational numbers. Then there exist integers m1, n1, m2, n2 such that x = m1/n1
and y = m2/n2. Now xy = (m1m2)/(n1n2). Therefore xy is rational.

15
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16 CHAPTER 2 SOLUTIONS

15. Let x be a nonzero rational number. Then there exist integers m �= 0 and n �= 0 such that
x = m/n. Now 1/x = n/m. Therefore 1/x is rational.

17. x · 0 + 0 = x · 0 because b + 0 = b for all real numbers b
= x · (0 + 0) because b + 0 = b for all real numbers b
= x · 0 + x · 0 because a(b + c) = ab + ac for all real numbers a, b, c

Taking a = c = x · 0 and b = 0, the preceding equation becomes a + b = a + c; therefore,
0 = b = c = x · 0.

18. We must have X = Y . To prove this, suppose that x ∈ X. Since Y is nonempty, choose y ∈ Y .
Then (x, y) ∈ X × Y . Since X × Y = Y × X, (x, y) ∈ Y × X. Therefore x ∈ Y . Similarly, if
x ∈ Y , then x ∈ X. Thus X = Y .

20. Let x ∈ X. Then x ∈ X ∪ Y . Therefore X ⊆ X ∪ Y .

21. Let x ∈ X ∪ Z. Then x ∈ X or x ∈ Z. If x ∈ X, since X ⊆ Y , x ∈ Y . Therefore x ∈ Y ∪ Z. If
x ∈ Z, then x ∈ Y ∪ Z. In either case, x ∈ Y ∪ Z. Therefore X ∪ Z ⊆ Y ∪ Z.

23. Let x ∈ Z −Y . Then x ∈ Z and x /∈ Y . Now x cannot be in X, for if x ∈ X, since X ⊆ Y , then
x ∈ Y , which is not the case. Since x ∈ Z and x /∈ X, x ∈ Z − X. Therefore Z − Y ⊆ Z − X.

24. Let x ∈ Y − (Y − X). Then x ∈ Y and x /∈ Y − X. Since x ∈ Y , we must have x ∈ X (if
x /∈ X, we would have x ∈ Y − X). Therefore Y − (Y − X) ⊆ X.

Now let x ∈ X. Then x /∈ Y − X. Since X ⊆ Y , x ∈ Y . Thus x ∈ Y − (Y − X). Therefore
X ⊆ Y − (Y − X). We have shown that Y − (Y − X) = X.

26. Let Z ∈ P(X) ∪ P(Y ). Then Z ∈ P(X) or Z ∈ P(Y ). If Z ∈ P(X), then Z is a subset of
X and, thus, Z is also a subset of X ∪ Y . Therefore Z ∈ P(X ∪ Y ). Similarly, if Z ∈ P(Y ),
Z ∈ P(X ∪ Y ). In either case, Z ∈ P(X ∪ Y ). Therefore P(X) ∪ P(Y ) ⊆ P(X ∪ Y ).

27. Let Z ∈ P(X ∩ Y ). Then Z is a subset of X ∩ Y . Therefore Z is a subset of X and a subset of
Y . Thus Z ∈ P(X) ∩ P(Y ). We have proved that P(X ∩ Y ) ⊆ P(X) ∩ P(Y ).

Let Z ∈ P(X) ∩ P(Y ). Then Z ∈ P(X) and Z ∈ P(Y ). Since Z ∈ P(X), Z is a subset of X.
Since Z ∈ P(Y ), Z is a subset of Y . Since Z is a subset of X and Y , Z is a subset of X∩Y . Thus
Z ∈ P(X ∩Y ). Therefore P(X)∩P(Y ) ⊆ P(X ∩Y ). It follows that P(X ∩Y ) = P(X)∩P(Y ).

29. Let X = {a} and Y = {b}. Then

P(X) = {∅, {a}}, P(Y ) = {∅, {b}},

so
P(X) ∪ P(Y ) = {∅, {a}, {b}}.

Since X ∪ Y = {a, b},
P(X ∪ Y ) = {∅, {a}, {b}, {a, b}}.

Now {a, b} ∈ P(X ∪ Y ), but {a, b} /∈ P(X) ∪ P(Y ). Therefore P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) is
false in general.
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CHAPTER 2 SOLUTIONS 17

30. (X ∩ Y ) − (X ∩ Z) = (X ∩ Y ) ∩ (X ∩ Z) [A − B = A ∩ B]
= (X ∩ Y ) ∩ (X ∪ Z) [De Morgan’s law;

Theorem 1.1.21, part (k)]
= ((X ∩ Y ) ∩ X) ∪ ((X ∩ Y ) ∩ Z) [Distributive law;

Theorem 1.1.21, part (c)]
= ((Y ∩ X) ∩ X) ∪ ((X ∩ Y ) ∩ Z) [Commutative law;

Theorem 1.1.21, part (b)]
= (Y ∩ (X ∩ X)) ∪ (X ∩ (Y ∩ Z)) [Associative law;

Theorem 1.1.21, part (a)]
= (Y ∩ ∅) ∪ (X ∩ (Y ∩ Z)) [Complement law;

Theorem 1.1.21, part (e)]
= ∅ ∪ (X ∩ (Y ∩ Z)) [Bound law;

Theorem 1.1.21, part (g)]
= (X ∩ (Y ∩ Z)) ∪ ∅ [Commutative law;

Theorem 1.1.21, part (b)]
= X ∩ (Y ∩ Z) [Identity law;

Theorem 1.1.21, part (d)]
= X ∩ (Y − Z) [A − B = A ∩ B]

32. False. Let X = {a} and Y = Z = {b}. Then

X ∪ (Y − Z) = {a}, (X ∪ Y ) − (X ∪ Z) = ∅.

33. True. Y − X = Y ∩ X = Y ∪ X = Y ∪ X = X ∪ Y .

35. False. Let X = {a} and Y = Z = {b}. Then

X − (Y ∪ Z) = {a}, (X − Y ) ∪ Z = {a, b}.

36. False. Let X = {a}, Y = {b}, and U = {a, b}. Then

X − Y = {b}, Y − X = {a}.

38. True. Let x ∈ (X ∩ Y ) ∪ (Y − X). Now either x ∈ X ∩ Y or x ∈ Y − X. In either case, x ∈ Y .
Therefore (X ∩ Y ) ∪ (Y − X) ⊆ Y .

Now suppose that x ∈ Y . Either x ∈ X or x /∈ X. If x ∈ X, then x ∈ X ∩ Y . Thus
x ∈ (X ∩ Y ) ∪ (Y − X). If x /∈ X, then x ∈ Y − X. Again x ∈ (X ∩ Y ) ∪ (Y − X). Thus
Y ⊆ (X ∩ Y ) ∪ (Y − X). Therefore (X ∩ Y ) ∪ (Y − X) = Y .

39. True. Let a ∈ X × (Y ∪ Z). Then a = (x, y) where x ∈ X and y ∈ Y ∪ Z. Now y ∈ Y or
y ∈ Z. If y ∈ Y , then a = (x, y) ∈ X × Y . Thus a ∈ (X × Y ) ∪ (X × Z). If y ∈ Z, then
a = (x, y) ∈ X ×Z. Again a ∈ (X ×Y )∪ (X ×Z). Therefore X × (Y ∪Z) ⊆ (X ×Y )∪ (X ×Z).

Now suppose that a ∈ (X×Y )∪(X×Z). Then either a ∈ X×Y or a ∈ X×Z. If a ∈ X×Y , then
a = (x, y) where x ∈ X and y ∈ Y . In particular, y ∈ Y ∪ Z. Thus a = (x, y) ∈ X × (Y ∪ Z).
If a ∈ X × Z, then a = (x, z) where x ∈ X and z ∈ Z. In particular, z ∈ Y ∪ Z. Thus
a = (x, z) ∈ X × (Y ∪ Z). Therefore (X × Y ) ∪ (X × Z) ⊆ X × (Y ∪ Z). We have proved that
X × (Y ∪ Z) = (X × Y ) ∪ (X × Z).
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18 CHAPTER 2 SOLUTIONS

41. True. Let a ∈ X × (Y − Z). Then a = (x, y), where x ∈ X and y ∈ Y − Z. Thus y ∈ Y and
y /∈ Z and, so, (x, y) ∈ X × Y and (x, y) /∈ X × Z. Therefore a = (x, y) ∈ (X × Y ) − (X × Z).
We have shown that X × (Y − Z) ⊆ (X × Y ) − (X × Z).

Now suppose that a ∈ (X × Y ) − (X × Z). Then a ∈ X × Y and a /∈ X × Z. Thus a = (x, y),
where x ∈ X, y ∈ Y , and y /∈ Z. Therefore a = (x, y) ∈ X × (Y − Z). We have shown that
(X × Y ) − (X × Z) ⊆ X × (Y − Z). It follows that X × (Y − Z) = (X × Y ) − (X × Z).

42. False. Take X = {1, 2}, Y = {1}, Z = {2}. Then

Y × Z = {(1, 2)}, X − Y = {2}, X − Z = {1}.

Thus
X − (Y × Z) = {1, 2} and (X − Y ) × (X − Z) = {(2, 1)}.

45–54. Argue as in the proof given in the book of the first associative law [Theorem 1.1.21, part (a)].

56. By definition
(A � B) � A = [(A � B) ∪ A] − [(A � B) ∩ A].

Show that
(A � B) ∪ A = A ∪ B and (A � B) ∩ A = A ∩ B.

The statement then follows easily.

57. The statement is true. We first prove that A ⊆ B. Let x ∈ A.

We divide the proof into two cases. First, we consider the case that x ∈ C. Then x �∈ A � C.
Therefore x �∈ B � C. Thus x ∈ B (since if x �∈ B, then x ∈ B � C).

Next, we consider the case that x �∈ C. Then x ∈ A � C. Therefore x ∈ B � C. Thus x ∈ B.

In either case, x ∈ B, and so A ⊆ B. Similarly, B ⊆ A, and so A = B.

59. The statement is false. Let

A = {1, 2}, B = {2, 3}, C = {1, 3}.

Since B ∩ C = {3},
A � (B ∩ C) = {1, 2, 3}.

Now
A � B = {1, 3} and A � C = {2, 3},

thus
(A � B) ∩ (A � C) = {3}.

60. The statement is false. Let

A = {1, 2}, B = {2, 3}, C = {1, 3}.

Since B � C = {1, 2},
A ∪ (B � C) = {1, 2}.

Since A ∪ B = A ∪ C = {1, 2, 3},

(A ∪ B) � (A ∪ C) = ∅.
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62. Yes, � is commutative:

A � B = (A ∪ B) − (A ∩ B) = (B ∪ A) − (B ∩ A) = B � A.

63. Yes, � is associative. We first prove that

(A � B) � C = (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C). (2.1)

[For the motivation of this formula, draw the Venn diagram of (A � B) � C.] By Exercise 55,

(A � B) � C = [(A � B) − C] ∪ [C − (A � B)].

Again using Exercise 55 and the fact that X − Y = X ∩ Y , we have

(A � B) − C = [(A − B) ∪ (B − A)] − C = [(A ∩ B) ∪ (B ∩ A)] ∩ C.

Using the definition of �, the fact that X − Y = X ∩ Y , and De Morgan’s laws, we have

A � B = (A ∪ B) − (A ∩ B) = (A ∪ B) ∩ (A ∩ B) = (A ∪ B) ∪ (A ∩ B) = (A ∩ B) ∪ (A ∩ B).

Thus
C − (A � B) = C ∩ (A � B) = C ∩ [(A ∩ B) ∪ (A ∩ B)].

Combining the preceding equations and using Theorem 1.1.21, we obtain equation (2.1)

(A � B) � C = [(A � B) − C] ∪ [C − (A � B)]
= {[(A ∩ B) ∪ (B ∩ A)] ∩ C} ∪ {C ∩ [(A ∩ B) ∪ (A ∩ B)]}
= (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C).

By Exercise 62, � is commutative. Thus

A � (B � C) = (B � C) � A.

We can obtain a formula for (B � C) � A using equation (2.1) with A replaced by B, B
replaced by C, and C replaced by A. However, noting that the right-hand side of equation
(2.1) is symmetric in A, B, and C, we see that the two expressions

(A � B) � C and A � (B � C)

are equal. Therefore, � is associative.

Section 2.2

2. False; x =
√

2 is a counterexample.

3. We prove the contrapositive: If x is rational, then x3 is rational.

Suppose that x is rational. Then there exist integers p and q such that x = p/q. Now x3 = p3/q3.
Thus x3 is rational.

Copyright © 2009  Pearson Education, Inc.  Publishing as Prentice Hall.



20 CHAPTER 2 SOLUTIONS

5. Suppose, by way of contradiction, that x < 1 and y < 1 and z < 1. Adding these inequalities
gives x + y + z < 3, which is a contradiction.

6. Suppose, by way of contradiction, that x >
√

2 and y >
√

2. Multiplying these inequalities
gives xy > 2, which is a contradiction.

8. Suppose, by way of contradiction, that x + y is rational. Since x and x + y are rational, there
exist integers p1, p2, q1, q2 such that x = p1/q1 and x + y = p2/q2. Now

y = (x + y) − x =
p2

q2
− p1

q1
=

p2q1 − p1q2

q1q2
.

Therefore y is rational, which is a contradiction.

9. False; a counterexample is x = 0, y =
√

2.

11. Since the integers increase without bound, there exists n ∈ Z such that
√

2/(b − a) < n.
Therefore

√
2/n < b − a. Choose m ∈ Z as large as possible satisfying m

√
2/n ≤ a. Then, by

the choice of m, a < (m + 1)
√

2/n. Also

(m + 1)
√

2
n

=
m

√
2

n
+

√
2

n
< a + (b − a) = b.

Therefore x = (m + 1)
√

2/n is an irrational number satisfying a < x < b. (If (m + 1)
√

2/n
is rational, say (m + 1)

√
2/n = p/q where p and q are integers, then

√
2 = np/[(m + 1)q] is

rational, which is not the case.)

12. If
√

2
√

2
is rational, then we have found irrational numbers a and b (namely a = b =

√
2)

such that ab is rational. Suppose that
√

2
√

2
is irrational. Let a =

√
2

√
2

and b =
√

2. Now

ab = (
√

2
√

2
)
√

2 = (
√

2)2 = 2 is rational. We have found irrational numbers a and b such that
ab is rational.

This proof is nonconstructive since it does not show whether the desired pair is a = b =
√

2 or

a =
√

2
√

2
, b =

√
2.

14. Let a = 2 and b = 1/2. Then a and b are rational. Now ab = 21/2 =
√

2 is irrational. This
proof is a constructive existence proof.

15. Suppose, by way of contradiction, that x > y. Let ε = (x − y)/2. Then

y + ε = y +
x − y

2
=

x + y

2
<

x + x

2
= x,

which is a contradiction.

17. Suppose, by way of contradiction, that X × ∅ is not empty. Then there exists (x, y) ∈ X × ∅.
Now y ∈ ∅, which is a contradiction.

18. Suppose that every box contains less than 12 balls. Then each box contains at most 11 balls
and the maximum number of balls contained by the nine boxes is 9 · 11 = 99. Contradiction.
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20. Let i be the greatest integer for which si is positive. Since s1 is positive and the set of indexes
1, 2, . . . , n is finite, such an i exists. Since sn is negative, i < n. Now si+1 is equal to either si+1
or si − 1. If si+1 = si + 1, then si+1 is a positive integer (since si is a positive integer). This
contradicts the fact that i is the greatest integer for which si is positive. Therefore, si+1 = si−1.
Again, if si − 1 is a positive integer, we have a contradiction. Therefore, si+1 = si − 1 = 0.

21. For n = 3, we have n2 > 2n.

23. The statement is false. Let s1 = s2 = 3. Then A = 3. For no i do we have si > A. The proof
is by counterexample.

24. The statement is true and we prove it using proof by contradiction. Suppose that for every j,
sj ≤ A. Since sj ≤ A for all j and si < A,

s1 + · · · + si + · · · + sn < A + · · · + A + · · · + A = nA.

Dividing by n, we obtain
s1 + · · · + sn

n
< A,

which is a contradiction.

26. Since si �= sj , either si �= A or sj �= A. By changing the notation, if necessary, we may assume
that si �= A. Either si < A or si > A. If si > A, the proof is complete; so assume that si < A.
We show that there exists k such that sk > A. Suppose, by way of contradiction, that sm ≤ A
for all m, that is,

s1 ≤ A

s2 ≤ A
...

sn ≤ A.

Adding these inequalities yields

s1 + s2 + · · · + si + · · · + sn < nA

since si < A. Dividing by n gives

s1 + s2 + · · · + sn

n
< A,

which is a contradiction. Therefore there exists k such that sk > A.

28. If m and n are positive integers and m > 3, then m3 + 2n2 > 36. If m and n are positive
integers and n > 4, then m3 + 2n2 > 36. Thus it suffices to consider the cases 1 ≤ m ≤ 3 and
1 ≤ n ≤ 4. The following table, which shows that values of m3 + 2n2, shows that there is no
solution to m3 + 2n2 = 36:
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m
1 2 3

1 3 10 29

n
2 9 16 35
3 19 26 45
4 33 40 59

29. Notice that 2m2 + 4n2 − 1 is odd and 2(m + n) is even. Therefore 2m2 + 4n2 − 1 �= 2(m + n)
for all positive integers m and n.

31. We consider two cases: n is even, n is odd. First suppose that n is even. By Exercise 9, Section
2.1, the product of even integers is even. Therefore n2 = n · n is even. Again by Exercise 9,
Section 2.1, n3 = n2 · n is even. By Exercise 7, Section 2.1, the sum of even integers is even.
Therefore n3 + n is even.

Now suppose that n is odd. By Exercise 10, Section 2.1, the product of odd integers is odd.
Therefore n2 = n · n is odd. Again by Exercise 10, Section 2.1, n3 = n2 · n is odd. By Exercise
8, Section 2.1, the sum of odd integers is even. Therefore n3 + n is even. In either case, n3 + n
is even.

33. First, note that from Exercise 32, for all x,

|−x| = |(−1)x| = |−1||x| = |x|.
Example 2.2.6 states that for all x, x ≤ |x|. Using these results, we consider two cases: x+y ≥ 0
and x + y < 0. If x + y ≥ 0, we have

|x + y| = x + y ≤ |x| + |y|.
If x + y < 0, we have

|x + y| = −(x + y) = −x + −y ≤ |−x| + |−y| = |x| + |y|.

35. Suppose that xy > 0. Then either x > 0 and y > 0 or x < 0 and y < 0. If x > 0 and y > 0,

sgn(xy) = 1 = 1 · 1 = sgn(x)sgn(y).

If x < 0 and y < 0,
sgn(xy) = 1 = −1 · −1 = sgn(x)sgn(y).

Next, suppose that xy = 0. Then either x = 0 or y = 0. Thus either sgn(x) = 0 or sgn(y) = 0.
In either case, sgn(x)sgn(y) = 0. Therefore

sgn(xy) = 0 = sgn(x)sgn(y).

Finally, suppose that xy < 0. Then either x > 0 and y < 0 or x < 0 and y > 0. If x > 0 and
y < 0,

sgn(xy) = −1 = 1 · −1 = sgn(x)sgn(y).

If x < 0 and y > 0,
sgn(xy) = −1 = −1 · 1 = sgn(x)sgn(y).
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36. |xy| = sgn(xy)xy = sgn(x)sgn(y)xy = [sgn(x)x][sgn(y)y] = |x||y|
38. Suppose that x ≥ y. Then

max{x, y} = x and |x − y| = x − y.

Thus
max{x, y} = x =

2x

2
=

x + y + x − y

2
=

x + y + |x − y|
2

.

The other case is x < y. Then

max{x, y} = y and |x − y| = y − x.

Thus
max{x, y} = y =

2y

2
=

x + y + y − x

2
=

x + y + |x − y|
2

.

39. Suppose that x ≥ y. Then

min{x, y} = y and |x − y| = x − y.

Thus
min{x, y} = y =

2y

2
=

x + y − (x − y)
2

=
x + y − |x − y|

2
.

The other case is x < y. Then

min{x, y} = x and |x − y| = y − x.

Thus
min{x, y} = x =

2x

2
=

x + y − (y − x)
2

=
x + y − |x − y|

2
.

40. max{x, y} + min{x, y} =
x + y + |x − y|

2
+

x + y − |x − y|
2

=
x + y + |x − y| + x + y − |x − y|

2

=
2x + 2y

2
= x + y.

42. Suppose that n is odd. Then n = 2k + 1. Now n + 2 = (2k + 1) + 2 = 2(k + 1) + 1 is odd.

Now suppose that n + 2 is odd. Then n + 2 = 2k + 1. Now n = (2k + 1) − 2 = 2(k − 1) + 1 is
odd.

Therefore n is odd if and only if n + 2 is even.

44. Suppose that A ⊆ C and B ⊆ C. Let x ∈ A ∪ B. Then either x ∈ A or x ∈ B. If x ∈ A, since
A ⊆ C, x ∈ C. If x ∈ B, since B ⊆ C, x ∈ C. In either case, x ∈ C. Therefore A ∪ B ⊆ C.

Now suppose that A∪B ⊆ C. Let x ∈ A. Then x ∈ A∪B. Since A∪B ⊆ C, x ∈ C. Therefore
A ⊆ C. Let x ∈ B. Then x ∈ A ∪ B. Since A ∪ B ⊆ C, x ∈ C. Therefore B ⊆ C. We conclude
that A ⊆ C and B ⊆ C. It follows that A ⊆ C and B ⊆ C if and only if A ∪ B ⊆ C.
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45. Suppose that C ⊆ A and C ⊆ B. Let x ∈ C. Since C ⊆ A, x ∈ A. Since C ⊆ B, x ∈ B. Since
x ∈ A and x ∈ B, x ∈ A ∩ B. Therefore C ⊆ A ∩ B.

Now suppose that C ⊆ A ∩ B. Let x ∈ C. Then x ∈ A ∩ B. In particular, x ∈ A. Therefore
C ⊆ A. Again let x ∈ C. Then x ∈ A ∩ B. In particular, x ∈ B. Therefore C ⊆ B. Thus
C ⊆ A and C ⊆ B. It follows that C ⊆ A and C ⊆ B if and only if C ⊆ A ∩ B.

48. [(a) → (b)] We assume that A ∩ B = ∅ and prove that B ⊆ A. Let x ∈ B. If x ∈ A, we obtain
the contradiction A ∩ B �= ∅. Thus x /∈ A. Hence x ∈ A. Therefore B ⊆ A.

[(b) → (c)] We assume that B ⊆ A and prove that A � B = A ∪ B.

Let x ∈ A � B. By definition, A � B = (A ∪ B) − (A ∩ B), thus x ∈ A ∪ B. Therefore
A � B ⊆ A ∪ B.

Let x ∈ A ∪ B. We first prove that x /∈ A ∩ B. Suppose, by way of contradiction, that
x ∈ A ∩ B. Then x ∈ A and x ∈ B. Since B ⊆ A, x ∈ A, which implies that x /∈ A. We
have the desired contradiction. Therefore x /∈ A ∩ B. Now x ∈ (A ∪ B) − (A ∩ B) = A � B.
Therefore A ∪ B ⊆ A � B. It follows that A � B = A ∪ B.

[(c) → (a)] We assume that A � B = A ∪ B and prove that A ∩ B = ∅. Suppose, by way of
contradiction, that A ∩ B is not empty. Then there exists x ∈ A ∩ B. Then x ∈ A ∪ B. This
implies that x /∈ A � B. Since x ∈ A ∪ B, A � B �= A ∪ B, which is a contradiction. Therefore
A ∩ B = ∅.

49. [(a) → (b)] We assume that A ∪ B = U and prove that A ∩ B = ∅. Taking the complement of
both sides of the equation A ∪ B = U and using De Morgan’s law and the 0/1 law (Theorem
1.1.21), we obtain

A ∩ B = A ∪ B = U = ∅.

[(b) → (c)] We assume that A ∩ B = ∅ and prove that A ⊆ B. Replace A by B and B by A
in Exercise 48(a) to obtain B ∩ A = ∅. Since Exercise 48(a) is equivalent to Exercise 48(b), we
obtain A ⊆ B or A ⊆ B.

[(c) → (a)] We assume that A ⊆ B and prove that A ∪ B = U . Since U is a universal set, we
automatically have A ∪ B ⊆ U .

Let x ∈ U . If x ∈ A, then x ∈ A ∪ B. If x /∈ A, then x ∈ A. Since A ⊆ B, x ∈ B. Again
x ∈ A ∪ B. Therefore U ⊆ A ∪ B. It follows that A ∪ B = U .

Problem-Solving Corner: Proofs

1. The least upper bound of a nonempty finite set of real numbers is the maximum number in the
set.

2. Call the given set X. We prove that the least upper bound of X is 1. Since

1 − 1
n

< 1
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for all positive integers n, 1 is an upper bound of X. Let a be an upper bound for X. Suppose,
by way of contradiction, that a < 1. Since the integers are unbounded, there exists a positive
integer k such that

1
1 − a

< k.

Multiplying by (1 − a)/k gives
1
k

< 1 − a,

which, in turn, is equivalent to

a < 1 − 1
k
.

This contradicts the fact that a is an upper bound of X. Thus 1 ≤ a and 1 is the least upper
bound of X.

3. Let b be the least upper bound of Y . If x ∈ X, then x ∈ Y and x ≤ b. Thus b is an upper
bound of X. If a is the least upper bound of X, a ≤ b.

4. 0

5. Let Z = {x + y | x ∈ X and y ∈ Y } and let z ∈ Z. Then z = x + y for some x ∈ X, y ∈ Y .
Now z = x + y ≤ a + b. Therefore Z is bounded above by a + b.

Let c be an upper bound of Z. Suppose, by way of contradiction, that c < a+b. Let ε = a+b−c.
Now a − ε/2 is not an upper bound of X so there exists x ∈ X such that

a − ε

2
< x.

Similarly, there exists y ∈ Y such that

b − ε

2
< y.

Adding the previous inequalities gives

c = a + b − ε < x + y,

which contradicts the fact that c is an upper bound of Z. Therefore c ≥ a + b and a + b is the
least upper bound of Z.

6. Since a is a greatest lower bound for X and b is a lower bound for X, b ≤ a. Since b is a greatest
lower bound for X and a is a lower bound for X, a ≤ b. Therefore a = b.

7. Let X be a nonempty set of real numbers bounded below. Let Y be the set of lower bounds of
X. The set Y is nonempty since X is bounded below. Let x be an element of X. For every
y ∈ Y , we have y ≤ x since y is a lower bound of X. Therefore Y is bounded above by x. Thus
Y is has a least upper bound, say a.

Next we show that a is a lower bound of X. Suppose, by way of contradiction, that a is not a
lower bound of X. Then there exists x ∈ X such that x < a. Then x is not an upper bound
of Y . Therefore there exists y ∈ Y such that x < y. But this contradicts the fact that y is a
lower bound of X. Therefore a is a lower bound of X.

Finally, we show that a is the greatest lower bound of X. Let b be a lower bound of X. Then
b ∈ Y . Since a is an upper bound of Y , b ≤ a. Therefore a is the greatest lower bound of X.
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8. Since a + ε > a, a + ε is not a lower bound of X. Therefore there exists x ∈ X such that
a + ε > x. Since a is a lower bound of X, x ≥ a.

9. Let tX denote the set
{tx | x ∈ X}.

We must prove that

(a) z ≥ ta for every z ∈ tX (i.e., ta is an lower bound for tX),
(b) if b is an lower bound for tX, then b ≤ ta (i.e., ta is the greatest lower bound for tX).

We first prove part (a). Let z ∈ tX. Then z = tx for some x ∈ X. Since a is an upper bound
for X, x ≤ a. Multiplying by t and noting that t < 0, we have z = tx ≥ ta. Therefore, z ≥ ta
for every z ∈ tX and the proof of part (a) is complete.

Next we prove part (b). Let b be a lower bound for tX. Then tx ≥ b for every x ∈ X. Dividing
by t and noting that t < 0, we have x ≤ b/t for every x ∈ X. Therefore b/t is an upper bound
for X. Since a is the least upper bound for X, b/t ≥ a. Multiplying by t and noting again that
t < 0, we have b ≤ ta. Therefore ta is the greatest lower bound for tX. The proof is complete.

Section 2.3

3. 1. ¬p ∨ r
2. ¬r ∨ q
3. p
4. ¬p ∨ q from 1,2
5. q from 3,4

4. 1. ¬p ∨ t
2. ¬q ∨ s
3. ¬r ∨ s
4. ¬r ∨ t
5. p ∨ q ∨ r ∨ u
6. t ∨ q ∨ r ∨ u from 1,5
7. s ∨ t ∨ r ∨ u from 2,6
8. s ∨ t ∨ u from 3,7

6. (p ↔ r) ≡ (p → r)(r → p) ≡ (¬p ∨ r)(¬r ∨ p)

1. ¬p ∨ r
2. ¬r ∨ p
3. r
4. p from 2,3

8. 1. a ∨ ¬b
2. a ∨ c
3. ¬a
4. ¬d
5. b negated conclusion
6. ¬b from 1,3
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Now 5 and 6 combine to give a contradiction.

Section 2.4

In some of these solutions, the Basis Steps are omitted.

2. 1 · 2 + 2 · 3 + · · · + n(n + 1) + (n + 1)(n + 2)

=
n(n + 1)(n + 2)

3
+ (n + 1)(n + 2) =

(n + 1)(n + 2)(n + 3)
3

3. 1(1!) + 2(2!) + · · · + n(n!) + (n + 1)(n + 1)!
= (n + 1)! − 1 + (n + 1)(n + 1)! = (n + 2)! − 1

5. 12 − 22 + · · · + (−1)n+1n2 + (−1)n+2(n + 1)2

=
(−1)n+1n(n + 1)

2
+ (−1)n+2(n + 1)2 =

(−1)n+2(n + 1)(n + 2)
2

6. 13 + 23 + · · · + n3 + (n + 1)3

=
[
n(n + 1)

2

]2

+ (n + 1)3 =
[
(n + 1)(n + 2)

2

]2

8.
1

2 · 4
+

1 · 3
2 · 4 · 6

+ · · · +
1 · 3 · · · (2n − 1)
2 · 4 · · · (2n + 2)

+
1 · 3 · · · (2n − 1)(2n + 1)
2 · 4 · · · (2n + 2)(2n + 4)

=
1
2

− 1 · 3 · · · (2n + 1)
2 · 4 · · · (2n + 2)

+
1 · 3 · · · (2n − 1)(2n + 1)
2 · 4 · · · (2n + 2)(2n + 4)

=
1
2

− 1 · 3 · · · (2n + 3)
2 · 4 · · · (2n + 4)

9.
1

22 − 1
+

1
32 − 1

+ · · · +
1

(n + 1)2 − 1
+

1
(n + 2)2 − 1

=
3
4

− 1
2(n + 1)

− 1
2(n + 2)

+
1

(n + 2)2 − 1

=
3
4

− 1
2(n + 2)

− 1
2(n + 3)

11. The solution is similar to that for Exercise 10, which is given in the book.

13. First note that
1 · 3 · · · (2n − 1)(2n + 1)

2 · 4 · · · (2n)(2n + 2)
≤ 1√

n + 1
2n + 1
2n + 2

.

The proof will be complete if we can show that

2n + 1
(2n + 2)

√
n + 1

≤ 1√
n + 2

.
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This last inequality is successively equivalent to

(
n + 2
n + 1

)1/2
≤ 2n + 2

2n + 1
n + 2
n + 1

≤ 4(n + 1)2

(2n + 1)2

(n + 2)(2n + 1)2 ≤ 4(n + 1)3

4n3 + 12n2 + 9n + 2 ≤ 4n3 + 12n2 + 12n + 4
−2 ≤ 3n.

This last inequality is true for all n ≥ 1.

14. 2(n + 1) + 1 = (2n + 1) + 2 ≤ 2n + 2 ≤ 2n + 2n = 2n+1

16. By the inductive assumption,

(a1 · · · a2n)1/2n ≤ a1 + · · · + a2n

2n
(2.2)

(a2n+1 · · · a2n+1)1/2n ≤ a2n+1 + · · · + a2n+1

2n
. (2.3)

Let
A =

a1 + · · · + a2n

2n
and B =

a2n+1 + · · · + a2n+1

2n
.

Multiplying inequalities (2.2) and (2.3), we have

(a1 · · · a2n+1)1/2n ≤ AB. (2.4)

Applying the Basis Step to the numbers A and B, we have

(AB)1/2 ≤ A + B

2

or, equivalently,

AB ≤
[
a1 + · · · + a2n+1

2n+1

]2
. (2.5)

Combining inequalities (2.4) and (2.5), we have

(a1 · · · a2n+1)1/2n ≤
[
a1 + · · · + a2n+1

2n+1

]2
.

Taking the square root of both sides of the last inequality gives the desired result.

17. (1 + x)n+1 = (1 + x)n(1 + x)
≥ (1 + nx)(1 + x)
= 1 + nx + x + nx2

≥ 1 + (n + 1)x
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19. If we sum the terms in the diagonal direction, we obtain one r, two r2’s, three r3’s, and so on;
that is, we obtain the sum

1 · r1 + 2 · r2 + · · · + nrn.

Multiplying the inequality of Exercise 18 by r yields

r1 + r2 + · · · + rn+1 <
r

1 − r
for all n ≥ 0. (2.6)

Thus, the sum of the entries in the first column is less than r/(1− r). Similarly, the sum of the
entries in the second column is less than r2/(1 − r), and so on. It follows from the preceding
discussion that

1 · r1 + 2 · r2 + · · · + nrn <
1

1 − r
(r1 + r2 + · · · + rn).

Using inequality (2.6), we obtain the desired result

1 · r1 + 2 · r2 + · · · + nrn <
1

1 − r
(r1 + r2 + · · · + rn) <

(
1

1 − r

) (
r

1 − r

)
=

r

(1 − r)2
.

20. Take r = 1/2 in Exercise 19.

22. Assume that 11n − 6 is divisible by 5.

11n+1 − 6 = 11n · 11 − 6 = 11n(10 + 1) − 6 = 10 · 11n + 11n − 6,

which is divisible by 5.

23. Suppose that 4 divides 6 · 7n − 2 · 3n. Now

6 · 7n+1 − 2 · 3n+1 = 7 · 6 · 7n − 3 · 2 · 3n

= 6 · 7n − 2 · 3n + 6 · 6 · 7n − 2 · 2 · 3n

= 6 · 7n − 2 · 3n + 36 · 7n − 4 · 3n.

Since 4 divides 6 ·7n −2 ·3n, 36 ·7n, and −4 ·3n, it divides their sum, which is 6 ·7n+1 −2 ·3n+1.

25. We prove part (a) only. The Basis Step is immediate.

Assume that

X ∩ (X1 ∪ X2 ∪ · · · ∪ Xn) = (X ∩ X1) ∪ (X ∩ X2) ∪ · · · ∪ (X ∩ Xn).

We must prove that

X ∩ (X1 ∪ X2 ∪ · · · ∪ Xn ∪ Xn+1) = (X ∩ X1) ∪ (X ∩ X2) ∪ · · · ∪ (X ∩ Xn) ∪ (X ∩ Xn+1).

Let Y = Xn ∪ Xn+1. By the inductive assumption,

X ∩ (X1 ∪ X2 ∪ · · · ∪ Xn−1 ∪ Y ) = (X ∩ X1) ∪ (X ∩ X2) ∪ · · · ∪ (X ∩ Xn−1) ∪ (X ∩ Y ).

By the associative law,

X ∩ (X1 ∪ X2 ∪ · · · ∪ Xn−1 ∪ Y ) = X ∩ (X1 ∪ X2 ∪ · · · ∪ Xn ∪ Xn+1).
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By the distributive law,

X ∩ Y = X ∩ (Xn ∪ Xn+1) = (X ∩ Xn) ∪ (X ∩ Xn+1).

Therefore

(X∩X1)∪(X∩X2)∪· · ·∪(X∩Xn−1)∪(X∩Y ) = (X∩X1)∪(X∩X2)∪· · ·∪(X∩Xn)∪(X∩Xn+1),

and the Inductive Step is complete.

28.
n

n + 1

30. We use induction on n, the number of lines, to prove the result. If there is one line, the result
is certainly true. Suppose that there are n > 1 lines. Remove one line. By the inductive
hypothesis, the regions that result may be colored red and green so that no two regions that
share an edge are the same color. Now restore the removed line. The regions above (or, if the
line is vertical, to the left of) the restored line are colored red and green so that no two regions
that share an edge are the same color, and the regions below (or, if the line is vertical, to the
right of) the restored line are also colored red and green so that no two regions that share an
edge are the same color. Now reverse the color of every region below (or, if the line is vertical,
to the right of) the restored line. The regions below (or, if the line is vertical, to the right of)
the restored line are still colored red and green so that no two regions that share an edge are
the same color. Since the colors below the restored line have been reversed, regions that share
an edge that is part of the restored line do not have the same color. Therefore the regions may
be colored red and green so that no two regions that share an edge are the same color, and the
inductive proof is complete.

31. The proof is by induction on the number n of zeros with the Basis Step, as usual, omitted.

Suppose that the result is true for n zeros, and we are given n+1 zeros and n+1 ones distributed
around a circle. Find a zero followed, in clockwise order, by a one. Temporarily remove these
two numbers. By the inductive assumption, it is possible to start at some number and proceed
around the circle to the original starting position in such a way that, at any point during the
cycle, one has seen at least as many zeros as ones. Notice that this last statement remains true
if we restore the removed zero and one.

33. A tromino can cover the square to the left of the missing square as shown

or in a symmetric fashion by reversing “up” and “down.” In the first case, it is impossible to
cover the two squares in the top row at the extreme left. In the second case, it is impossible to
cover the two squares in the bottom row at the extreme left. Therefore, it is impossible to tile
the board with trominoes.

34. Such a board can be tiled with ij 2 × 3 rectangles of the form
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36. By symmetry, we may assume that the missing square is located in the 7 × 7 subboard shown
in the following figure. Exercise 35 shows how to tile this subboard. Exercise 34 shows that
the two 6 × 4 subboards can be tiled. Exercise 32 shows that the 5 × 5 subboard with a corner
square can be tiled. Thus the deficient 11 × 11 board can be tiled with trominoes.

7 × 7

6 × 4 5 × 5

6 × 4

11

11

37. Basis Step (n = 0). In this case, the 2n × 2n L-shape is a tromino and, so, it is tiled.

Inductive Step. Assume that we can tile a 2n−1 × 2n−1 L-shape with trominoes. Given a
2n × 2n L-shape, divide it into four 2n−1 × 2n−1 L-shapes:

By the inductive assumption, we can tile each of the four 2n−1 ×2n−1 L-shapes with trominoes.
The inductive step is complete.

40. Arguing as in the solution to Exercise 39, the numberings

1

1

1

1

1

3

3

3

3

2

2

2

1

13

2

2

2

2

3

3

3

1

1

2

show that the only possibility for the missing square is the center square. This board can be
tiled:
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41. An argument like those in the solutions to Exercises 39 and 40 shows that the only board that
can be tiled with straight trominoes is the one with the missing square in row 3, column 3 (and
the three boards symmetric to it).

43. We show only the inductive step. There are two cases: a[k] < val and a[k] ≥ val . If a[k] ≥ val ,
the value of h does not change. Thus, we still have a[p] < val , for all p, i < p ≤ h. After k is
incremented, for all p, h < p < k, a[p] ≥ val .

If a[k] < val , then h is incremented and a[h] and a[k] are swapped. Let hold denote the original
value of h, and hnew denote the new (incremented) value of h. The value at hnew is the original
a[k]. Since this value is less than val, the value of a[hnew ] is less than val . Thus, for all p,
i < p ≤ hnew , a[p] < val . After the swap, the value at k becomes hnew . By the inductive
assumption, this value is greater than or equal to val . Thus after k is incremented, for all p,
hnew < p < k, a[p] ≥ val .

44. The argument is essentially identical to that of Example 2.4.7 that shows that any 2n × 2n

deficient board can be tiled with trominoes.

45. Notice that
k3 − 1 = (k − 1)[(k − 2)(k − 4) + 7(k − 1)].

Since 7 divides k3 − 1, 7 divides k − 1 or (k − 2)(k − 4) + 7(k − 1). If 7 divides the latter
expression, 7 also divides (k − 2)(k − 4). If 7 divides (k − 2)(k − 4), 7 divides either k − 2 or
k − 4.

47. The Inductive Step fails if either a or b is 1. In this case, the inductive hypothesis is erroneously
applied to the pair a − 1, b − 1, which includes a nonpositive integer.

48. To argue by contradiction, one must assume that the proposition fails for some n ≥ 2. The
alleged proof assumes that the proposition fails for all n ≥ 2.

49. For n = 2, the inequality becomes 1
2 + 2

3 < 4
3 , which is true. Thus the Basis Step is true.

Assume that the given statement holds for n. Now

1
2

+
2
3

+ · · · +
n

n + 1
+

n + 1
n + 2

<
n2

n + 1
+

n + 1
n + 2

.

The Inductive Step will be proved provided

n2

n + 1
+

n + 1
n + 2

<
(n + 1)2

n + 2
.
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If we multiply the last inequality by (n + 1)(n + 2), we obtain

n2(n + 2) + (n + 1)2 < (n + 1)3,

which is readily verified as true.

51. In the following figure

�

� �

�

� �

a b
a and b are both survivors.

52. Suppose that there are three persons. The two persons closest together throw at each other,
and the third person throws at one of the two closest. Therefore the third person survives.
This complete the Basis Step.

Suppose that the assertion is true for n, and consider n + 2 persons. Again, the closest pair
throws at each other. There are now two cases to consider. If the remaining n persons all
throw at one another, by the inductive assumption, there is a survivor. If at least one of the
remaining n persons throws at one of the closest pair, among the remaining n persons, at most
n − 1 pies are thrown at one another. In this case, someone survives because there are not
enough pies to go around. The Inductive Step is complete.

54. The statement is false. In the following figure

� � �

�

�

a

a throws a pie the greatest distance, but is not a survivor.

56. Let x1 be a common point of X2, X3, X4; let x2 be a common point of X1, X3, X4; let x3 be a
common point of X1, X2, X4; and let x4 be a common point of X1, X2, X3. Since x1, x2, x3 ∈ X4,
the triangle x1x2x3 (perimeter and interior) is in X4. Similarly, the triangle x1x2x4 is in X3;
the triangle x1x3x4 is in X2; and the triangle x2x3x4 is in X1. We consider two cases:

Case 1: One of the points x1, x2, x3, x4 is in the triangle whose vertices are the other three
points. For example, suppose that x1 is in triangle x2x3x4. Since triangle x2x3x4 is in X1,
x1 ∈ X1. By definition, x1 ∈ X2 ∩ X3 ∩ X4. Therefore, x1 ∈ X1 ∩ X2 ∩ X3 ∩ X4.

Case 2: None of the points x1, x2, x3, x4 is in the triangle whose vertices are the other three
points. In this case, x1, x2, x3, x4 are the vertices of a convex quadrilateral:

������

�
�

�
�

�
�

�
�

��

�
�

�
�

�
��

���������

�

x4

�

x2

� x3

�x1

�

x

Now the intersection, x, of the diagonals of this quadrilateral belongs to each of the triangles
and, thus, to each of X1, X2, X3, X4.
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57. The proof is by induction on n. The Basis Step is n = 4, which is Exercise 56.

We turn to the Inductive Step. Assume that if X1, . . . , Xn are convex sets, each three of which
have a common point, then all n sets have a common point.

Let X1, . . . , Xn, Xn+1 be convex sets, each three of which have a common point. We must show
that all n + 1 sets have a common point. By Exercise 55,

X1, . . . , Xn−1, Xn ∩ Xn+1 (2.7)

are convex sets. We claim that any three of the sets in (2.7) have a common point. The claim
is true by hypothesis if the three sets are any of X1, . . . , Xn−1. Consider Xi, Xj , Xn ∩ Xn+1,
i < j ≤ n−1. By hypothesis, any three of Xi, Xj , Xn, Xn+1 have a common point. By Exercise
56, Xi, Xj , Xn, Xn+1 have a common point. Therefore, Xi, Xj , Xn∩Xn+1 have a common point.
Thus, any three of the sets in (2.7) have a common point. By the inductive assumption, the
sets in (2.7) have a common point. The Inductive Step is complete.

59. We first prove the result for n = 3. Let A1, A2, A3 be open intervals such that each pair has a
nonempty intersection. Choose x1 ∈ A1 ∩ A2, x2 ∈ A1 ∩ A3, x3 ∈ A2 ∩ A3. Note that if any
pair (x1, x2 or x1, x3 or x3, x3) is equal, it is in A1 ∩ A2 ∩ A3. We may assume x1 < x2. We
consider three cases. First suppose that x3 < x1. Since x2, x3 ∈ A3, [x3, x2] ⊆ A3. ([a, b] is the
set of all x satisfying a ≤ x ≤ b.) Thus x1 ∈ A3. Therefore x1 ∈ A1 ∩ A2 ∩ A3.

Next suppose that x1 < x3 < x2. Since x1, x2 ∈ A1, [x1, x2] ⊆ A1. Thus x3 ∈ A1. Therefore
x3 ∈ A1 ∩ A2 ∩ A3.

Finally suppose that x1 < x2 < x3. Since x1, x3 ∈ A2, [x1, x3] ⊆ A2. Thus x2 ∈ A2. Therefore
x2 ∈ A1 ∩A2 ∩A3. We have shown that if A1, A2, A3 are open intervals such that each pair has
a nonempty intersection, then A1 ∩ A2 ∩ A3 is nonempty.

We now prove that given statement using induction on n. The Basis Step (n = 2) is trivial.

Assume that if I1, . . . , In is a set of open intervals such that each pair has a nonempty intersec-
tion, then I1 ∩ · · · ∩ In is nonempty. Let I1, . . . , In+1 be a set of open intervals such that each
pair has a nonempty intersection. Since In ∩ In+1 is nonempty, it is an open interval. We claim
that

I1, . . . , In−1, In ∩ In+1

is a set of open intervals such that each pair has a nonempty intersection. This is certainly
true for pairs of the form Ii, Ij , 1 ≤ i < j ≤ n − 1. Consider a pair of the form Ii, i ≤ n − 1,
and In ∩ In+1. Since each pair among Ii, In, In+1 has nonempty intersection, by the case n = 3
proved previously, Ii ∩ In ∩ In+1 is nonempty. Therefore,

I1, . . . , In−1, In ∩ In+1

is a set of open intervals such that each pair has a nonempty intersection. By the inductive
assumption

Ii ∩ · · · ∩ In−1 ∩ (In ∩ In+1)

is nonempty. The inductive step is complete.

61. 5 62. 5
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64. After j rounds, 2, 4, . . . , 2j have been eliminated. At this point, there are 2i persons. This
is exactly the Josephus problem when the number of persons is a power of 2, except that the
round begins with person 2j + 1, rather than with person 1. By Exercise 63, person 2j + 1 is
the survivor.

65. 977

68. ∆an = an+1 − an = (n + 1)2 − n2 = 2n + 1. Let bn = ∆an. Then

b1 + b2 + · · · + bn = (2 · 1 + 1) + (2 · 2 + 1) + · · · + (2n + 1)
= 2(1 + 2 + · · · + n) + (1 + 1 + · · · + 1)
= 2(1 + 2 + · · · + n) + n.

By Exercise 67,

b1 + b2 + · · · + bn = an+1 − a1 = (n + 1)2 − 12 = n2 + 2n.

Combining the previous equations, we obtain

n2 + 2n = 2(1 + 2 + · · · + n) + n.

Solving for 1 + 2 + · · · + n, we obtain

1 + 2 + · · · + n =
n2 + 2n − n

2
=

n2 + n

2
=

n(n + 1)
2

.

69. Let an = n!. Then

∆an = an+1 − an = (n + 1)! − n! = n![(n + 1) − 1] = n(n!).

Let bn = ∆an. Then

b1 + b2 + · · · + bn = 1(1!) + 2(2!) + · · · + n(n!).

By Exercise 67,
b1 + b2 + · · · + bn = an+1 − a1 = (n + 1)! − 1!.

Combining the previous equations, we obtain

1(1!) + 2(2!) + · · · + n(n!) = (n + 1)! − 1.

71. Since p is divisible by k, there exists t1 such that p = t1k. Since q is divisible by k, there exists
t2 such that p = t2k. Now

p + q = t1k + t2k = (t1 + t2)k.

Therefore, p + q is divisible by k.
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Problem-Solving Corner: Mathematical Induction

1. The Basis Step (n = 0) is H1 ≤ 1 + 0. Since H1 = 1, the Basis Step is true.

Now assume that H2n ≤ 1 + n. Then

H2n+1 = H2n +
1

2n + 1
+ · · · +

1
2n+1

≤ 1 + n +
1

2n + 1
+ · · · +

1
2n + 1

= 1 + n +
2n

2n + 1
≤ 1 + (n + 1).

The Inductive Step is complete.

2. The Basis Step (n = 1) is H1 = 2H1 − 1. Since H1 = 1, the Basis Step is true.

Now assume that
H1 + H2 + · · · + Hn = (n + 1)Hn − n.

Then

H1 + H2 + · · · + Hn + Hn+1 = (n + 1)Hn − n + Hn+1

= (n + 1)
(

Hn+1 − 1
n + 1

)
by Exercise 3

− n + Hn+1

= (n + 2)Hn+1 − (n + 1).

The Inductive Step is complete.

3. Hn+1 − 1
n + 1

=
(

1
1

+
1
2

+ · · · +
1
n

+
1

n + 1

)
− 1

n + 1
=

1
1

+
1
2

+ · · · +
1
n

= Hn

4. We prove the assertion by induction. The Basis Step is n = 1:

1 · H1 = 1 =
3
2

− 1
2

=
1 · 2
2

H2 − 1 · 2
4

.

For the Inductive Step, assume the assertion if true for n. Now

1 · H1 + · · · + nHn + (n + 1)Hn+1 =
n(n + 1)

2
Hn+1 − n(n + 1)

4
+ (n + 1)Hn+1

= (n + 1)Hn+1

[
n

2
+ 1

]
− n(n + 1)

4

= Hn+1

[
(n + 1)(n + 2)

2

]
− n(n + 1)

4

=
[
Hn+2 − 1

n + 2

] [
(n + 1)(n + 2)

2

]
by Exercise 3

− n(n + 1)
4

= Hn+2

[
(n + 1)(n + 2)

2

]
− n + 1

2
− n(n + 1)

4

= Hn+2

[
(n + 1)(n + 2)

2

]
− (n + 1)(n + 2)

4
.
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Section 2.5

2. Verify directly the cases n = 24, . . . , 28. Assume that the statement is true for postage i
satisfying 24 ≤ i < n. We must show that we can make n cents postage using only 5-cent
and 7-cent stamps. We may assume that n > 28. Then n > n − 5 > 23. By the inductive
assumption, we can make n − 5 cents postage using 5-cent and 7-cent stamps. Add a 5-cent
stamp to obtain n cents postage.

4. The Basis Step (n = 6) is proved by using three 2-cent stamps. Now assume that we can make
postage for n cents. If there is at least one 7-cent stamp, replace it by four 2-cent stamps to
make n + 1 cents postage. If there are no 7-cent stamps, there are at least three 2-cent stamps
(because n ≥ 6). Replace three 2-cent stamps by one 7-cent stamp to make n+1 cents postage.
The Inductive Step is complete.

5. The Basis Step (n = 24) is proved by using two 5-cent stamps and two 7-cent stamps. Now
assume that we can make postage for n cents. If there are at least two 7-cent stamps, replace
two 7-cent stamps with three 5-cent stamps to make n+1 cents postage. If there is exactly one
7-cent stamp, then there are at least four 5-cent stamps (because n ≥ 24). Replace one 7-cent
stamp and four 5-cent stamps with four 7-cent stamps to make n+1 cents postage. If there are
no 7-cent stamps, then there are at least five 5-cent stamps (again because n ≥ 24). Replace
five 5-cent stamps with three 7-cent stamps and one 5-cent to make n + 1 cents postage. The
Inductive Step is complete.

7. We must have 4 ≤ �n/2�. Since this inequality fails for n = 5, 6, 7, the Basis Steps are
n = 4, 5, 6, 7.

8. We must have 2 ≤ �n/3�. Since this inequality fails for n = 3, 4, 5, the Basis Steps are
n = 2, 3, 4, 5.

10. We omit the Basis Step. For the Inductive Step, we have

cn = c�n/2� + n2 < 4
⌊
n

2

⌋2
+ n2 ≤ 4

(
n

2

)2
+ n2 = 2n2 < 4n2.

12. We omit the Basis Step. For the Inductive Step, we have

cn = 4c�n/2� + n ≤ 4[4(�n/2� − 1)2] + n

≤ 4[4(n/2 − 1)2] + n

= 4n2 − 15n + 16
≤ 4(n − 1)2.

The last inequality reduces to 12 ≤ 7n, which is true since n > 1.

13. We omit the Basis Steps (n = 2, 3). We turn to the Inductive Step. Assume that n ≥ 4. Then
n/2 ≥ 2, so �n/2� ≥ 2. Then

cn = 4c�n/2� + n > 4(�n/2� + 1)2/8 + n

≥ 4[(n − 1)/2 + 1]2/8 + n

= (n + 1)2/8 + n

> (n + 1)2/8.
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We used the fact that �n/2� ≥ (n − 1)/2 for all n.

15. Basis Step (n = 1). The first player removes one card (from either pile). The second player
then removes the last card and wins the game.

Inductive Step. Suppose that n > 1 and whenever there are two piles of k < n cards, the
second player can always win the game.

Suppose that there are two piles of n cards. The first player removes i cards from one of the
piles. If i = n (i.e., the first player removes all of the cards from one pile), the second player can
win by removing all of the cards from the remaining pile. If i < n, the second player removes i
cards from the other pile leaving two piles each with n − i cards. The game then resumes with
the first player facing two piles each with k = n − i < n cards. By the inductive assumption,
the second player can win the game. The inductive proof is complete.

17. q = −6, r = 7 18. q = 0, r = 7 20. q = 0, r = 0 21. q = 1, r = 0

23. If
p

q
=

1
n1

+
1
n2

+ · · · +
1
nk

where n1 < n2 < . . . < nk, another representation is

p

q
=

1
n1

+
1
n2

+ · · · +
1

nk−1
+

1
nk + 1

+
1

nk(nk + 1)

24. (b) Since p/q < 1, n > 1. Since n is the smallest positive integer satisfying 1/n ≤ p/q and
n − 1 is a positive integer less than n, p/q < 1/(n − 1).

(d) We have

p1

q1
=

np − q

nq
=

p

q
− 1

n
. (2.8)

Since 1/n < p/q, equation (2.8) shows that

0 <
p1

q1
.

Since
p

q
<

1
n − 1

,

we have
np − p < q

or
p1 = np − q < p.

The third inequality is established.
Now

p1

q1
<

p

q1
=

p

nq
=

1
n

p

q
<

1
n

· 1 =
1
n

. (2.9)
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In particular,
p1

q1
< 1.

We have established the second inequality.
By the inductive assumption, p1/q1 can be expressed in Egyptian form. The last equation
follows.

(e) See (2.9).

(f) The equation is true because of (d). For any i = 1, . . . , k,

1
ni

≤ 1
n1

+ · · · +
1
nk

=
p1

q1
<

1
n

.

It follows that n, n1, . . . , nk are distinct.

25. 3
8 = 1

3 + 1
24 , 5

7 = 1
2 + 1

5 + 1
70 , 13

19 = 1
2 + 1

6 + 1
57

28. Enclose the missing square in a corner (n − 3) × (n − 3) subboard as shown in the following
figure. Since 3 divides n2 − 1, 3 also divides (n − 3)2 − 1. Now n − 3 is odd, n − 3 > 5, and
3 divides (n − 3)2 − 1, so by Exercise 27, we may tile this subboard. Tile the two 3 × (n − 4)
subboards using the result of Exercise 34, Section 2.4. Tile the deficient 4 × 4 subboard using
Example 2.4.7. The n × n board is tiled.

(n − 3) × (n − 3)

3 × (n − 4) 4 × 4

3×(n−4)

n

n

29. If n = 0, d · 1 = d > 0, and 1 is in X. If n > 0, d(2n) = n(2d) > n; thus 2n is in X. In
either case X is nonempty. Since d > 0 and n ≥ 0, X contains only positive integers. By the
Well-Ordering Property, X contains a least element q′ > 0. Then dq′ > n. Let q = q′ − 1. We
cannot have dq > n (for then q′ would not be the least element in X); therefore, dq ≤ n. Let
r = n − dq. Then r ≥ 0. Also

r = n − dq = n − d(q′ − 1) < dq′ − d(q′ − 1) = d.

Therefore, we have found q and r satisfying

n = dq + r 0 ≤ r < d.

30. We first prove Theorem 2.5.6 for n > 0. The Basis Step is n = 1. If d = 1, we have n = dq + r,
where q = n and r = 0, 0 ≤ r < d. If d > 1, we have n = dq + r, where q = 0 and r = 1,
0 ≤ r < d. Thus Theorem 2.5.6 is true for n = 1.
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Assume that Theorem 2.5.6 holds for n. Then there exists q′ and r′ such that

n = dq′ + r′ 0 ≤ r′ < d.

Now
n + 1 = dq′ + (r′ + 1).

If r′ < d − 1, then r′ + 1 < d. In this case, if we take q = q′ and r = r′ + 1, we have

n + 1 = dq + r 0 ≤ r < d.

If r′ = d − 1, we have
n + 1 = d(q′ + 1).

In this case, if we take q = q′ + 1 and r = 0, we have

n + 1 = dq + r 0 ≤ r < d.

The Inductive Step is complete. Therefore, Theorem 2.5.6 is true for all n > 0.

If n = 0, we may write
n = dq + r,

where q = r = 0. Therefore, Theorem 2.5.6 is true for n = 0.

Finally, suppose that n < 0. Then −n > 0, so by the first part of the proof, there exist q′ and
r′ such that

−n = dq′ + r′ 0 ≤ r′ < d.

If r′ = 0, we may take q = −q′ and r = 0 to obtain

n = dq + 0.

If r′ > 0, we take q = −q′ − 1 and r = d − r′. Then 0 < r < d and

n = d(−q′) − r′ = d(q + 1) + (r − d) = dq + r.

Therefore, Theorem 2.5.6 is true for n < 0.

32. Suppose that we have a propositional function S(n) whose domain of discourse is the set of
integers greater than or equal to n0. Suppose that S(n0) is true and, for all n > n0, if S(k) is
true for all k, n0 ≤ k < n, then S(n) is true. We must prove that S(n) is true for every integer
n ≥ n0. We first assume that n0 ≥ 0.

We argue by contradiction. So assume that S(n) is false for some integer n1 ≥ n0. Let X be
the set of nonnegative integers for which S(n) is false. Then X is nonempty. By the Well-
Ordering Property, X has a least element n2. Since S(n0) is true, n2 > n0. Furthermore, for
any k, n0 ≤ k < n2, S(k) is true [otherwise n2 would not be the least integer n for which S(n)
is false]. Since S(k) is true for all k, n0 ≤ k < n2, by hypothesis, S(n2) is true. Contradiction.

If n0 < 0, apply the previous argument to the propositional function

S′(n) : S(n + n0)

with domain of discourse the set of nonnegative integers.

33. The strong form of induction clearly implies the form of induction where the Inductive Step is:
“If S(n) is true, then S(n + 1) is true.” For the converse, use Exercises 31 and 32.
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