Mathematical Models of Systems

Exercises

E2.1 We have for the open-loop

and for the closed-loop

e=r—y and y=e?.

So,e=r—ce?ande’+e—r=0.

10k . N -

61 open-loop 7

2 closed-toop =

0 0.5 1 1.5 2 25 3 35 4

FIGURE E2.1
Plot of open-loop versus closed-loop.

For example, if » = 1, then e? + e — 1 = 0 implies that e = 0.618. Thus,
y = 0.382. A plot y versus r is shown in Figure E2.1.
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Define
f(T) = R = Roe” 1"
and
AR=f(T)— f(Ty) , AT =T -1y .
Then,
af
AR= f(T) ~ {(Ty) = 5 AT 1
or T=TH=20°
where
of

— = —0.1Rpe” "0 = 135

or T=Ty=20° 7
when Ry = 10,000€2. Thus, the linear approximation is computed by
considering only the first-order terms in the Taylor series expansion, and
is given by

AR = —135AT .

The spring constant for the equilibrium point is found graphically by
estimating the slope of a line tangent to the force versus displacement
curve at the point y = 0.5cm, see Figure E2.3. The slope of the line is
K =~1.

1.5F g
1L Spring breaks |
0.5 8
0 4
<
g 05 1
8
1k .
15r- g
2+ .
251 Spring compresses )
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
y=Displacement (cm)
FIGURE E2.3

Spring force as a function of displacement.



24 CHAPTER 2 Mathematical Models of Systems

E2.4 Since
1
R(S) = g
we have
4(s + 50)
Y(s) = .
() s(s+20)(s + 10)

The partial fraction expansion of Y'(s) is given by

A A A,

v
=T+ T 570

where
Ay=1, Ay =06and A3=-16.
Using the Laplace transform table, we find that
y(t) = 1+ 0.6e72% — 1.6e710

The final value is computed using the final value theorem:

: . 4(s + 50)
A y() = s | e 0s + 200y )~

E2.5 The circuit diagram is shown in Figure E2.5.

R,
M
\
A —O § R,

o + +

+
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FIGURE E2.5
Noninverting op-amp circuit.

With an ideal op-amp, we have

Vo = A(vip, —v7),
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where A is very large. We have the relationship

_ Ry
V= —————,.
R+ Ry ‘
Therefore,
R
Vo = A(Uzn — MTIRQUO)’
and solving for v, yields
A
Vo = T AR Vin -
L+ R1+1132

Since A > 1, it follows that 1 + R?f]l%g R~ R?f]l%g' Then the expression for
v, simplifies to

R+ Ry
Vo = Tlvin.
Given
y=[f(z)=¢"
and the operating point x, = 1, we have the linear approximation
of
y:f(x)_f(xo)+8_ (‘73 xo)"’_
L |r=x,
where
d,
flx,) =e, a =e¢, and z—x,=x— L.
daj r=xzo=1

Therefore, we obtain the linear approximation y = ex.

The block diagram is shown in Figure E2.7.

R(s) Gi(s) —{ Gy(s) > 1(s)

I
=
n
<
7 Y

FIGURE E2.7
Block diagram model.
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Starting at the output we obtain
I(s) = G1(s)Ga(s)E(s).
But E(s) = R(s) — H(s)I(s), so
I(s) = G1(s)Ga(s) [R(s) — H(s)I(s)] -
Solving for I(s) yields the closed-loop transfer function

) Gils)Gals)
R(s) 14 Gi(s)Ga(s)H(s)

E2.8 The block diagram is shown in Figure E2.8.

H(s) [«
Y A(s) Z(s)[
mg——gPE:K —aghmyg}»em) o G(s) o > Y(s)
L H3(s) |e
Hq(s) [«

FIGURE E2.8
Block diagram model.

Starting at the output we obtain

ﬂ@:éﬂﬁ:%@@M@)

But A(s) = Gi(s) [-Ha(s)Z(s) — Hs(s)A(s) + W(s)] and Z(s) = sY (s),

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s) + éGl(s)Gg(s)W(s).
Substituting W (s) = KE(s) — H1(s)Z(s) into the above equation yields

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)H3(s)Y (s)
+2Gi()Ga(s) [KB(s) — Hi()2(5)
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and with F(s) = R(s) — Y (s) and Z(s) = sY(s) this reduces to
Y(s) = [=G1(s)Ga(s) (Ha(s) + Hi(s)) — G1(s)Hs(s)
- %Gl(s)Gg(s)K]Y(s) + éGl(s)Gg(s)KR(s).

Solving for Y'(s) yields the transfer function

B KG1(s)Ga(s)/s
B 1+ G1(8)G2(8) [(HQ(S) + Hl(s)] + G1(8)H3(8) + KGl(S)GQ(S)/S'

From Figure E2.9, we observe that

Ft(s) = Ga(s)U(s)
and

Fr(s) =Gs(s)U(s) .

Then, solving for U(s) yields

U(s) = gy )
and it follows that
Fils) = G2IU(6)

Again, considering the block diagram in Figure E2.9 we determine
Fy(s) = G ()Ga(s)[R(s) — Ha(s)Fy(s) — Ha(s)Fr(s)] -
But, from the previous result, we substitute for Fg(s) resulting in
Fi(s) = G1(5)Ga(s) R(s)~ G (5)Ga(s) Ha(s) Fy ()~ G (s) Ha() G () Fy (s)
Solving for F(s) yields

_ G1(s)Ga(s)
1+ G1(s)Ga(s)Ha(s) + Gi(s)G3(s)Ha(s)

Fy(s) R(s) .
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E2.10

E2.11
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Hy(s)

UGs) Go(s) > [ (s)

R(s) —5O— Gi(6)

Us)

h 4

G3(s) » Fr(s)

Hy(s)

FIGURE E2.9
Block diagram model.

The shock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

Ge(s)Gp(s)G(5)

T(s) = .
1+ H(s)Ge(s)Gp(s)G(s)
Controller Gear Motor P':Slrsr?;;:tzcr‘n
+
R(s) G(s) > Gpls) > G(s) > Y(s)
Desired piston Piston
travel travel
Sensor
H(s)
Piston travel
measurement
FIGURE E2.10

Shock absorber block diagram.

Let f denote the spring force (n) and x denote the deflection (m). Then
Af
e
Computing the slope from the graph yields:
(a) 2o =—-0.14m - K = Af/Az =10n / 0.04 m = 250 n/m
(b) 2o =0m - K =Af/Az =10n / 0.05 m = 200 n/m
(¢) , =0.35m — K = Af/Az = 3n / 0.05 m = 60 n/m
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The signal flow graph is shown in Fig. E2.12. Find Y (s) when R(s) = 0.

FIGURE E2.12
Signal flow graph.

The transfer function from Ty(s) to Y(s) is

Y( ) o G(S)Td(s) — KlKQG(S)Td(S) . G(S)(l — KlKg)Td(S)
8= 1— (—K2G(5)) - 1+ K2G(5) '

If we set
KiKy=1,

then Y (s) = 0 for any Ty(s).
The transfer function from R(s), Ty(s), and N(s) to Y (s) is

K 1 K
Y(s)= |— > B S e n e I (S Y
(5) [32+103+K}R(8)+[32+108+K} als) [s2+103+K} (5)
Therefore, we find that

1 K

Y /Tas) = o057 24 YO/INGS =—Fo90,7F%

Since we want to compute the transfer function from Ra(s) to Yi(s), we
can assume that Ry = 0 (application of the principle of superposition).
Then, starting at the output Y7 (s) we obtain

Yi(s) = Ga(s) [-Hi(s)Y1(s) + Ga(s)Gs(s)W (s) + Go(s)W (s)] ,
[1+ Gs(s)Hi(s)] Yi(s) = [Gs(s)Ga(s)Gs(s)W (s) + Ga(s)Go(s)] W (s)-
Considering the signal W (s) (see Figure E2.14), we determine that
W(s) = Gs(s) [Ga(s)Ra(s) — Ha(s)W (s)],
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; /
Ry(s) ——— Gals) — Gs(s) > GglS) —> Y(s)

FIGURE E2.14
Block diagram model.

E2.15

E2.16

[14 G5(s)Ha(s)| W (s) = G5(s)Ga(s)Ra(s).

Substituting the expression for W (s) into the above equation for Y;(s)
yields
Yi(s) _ Ga(s)Ga(s)Ga(5)Gs(5)Gs(s) + Ga(5)Ga(5)Gs(s)Gals)
RQ(S) 1+ Gg(S)Hl(S) + G5(8)H2(8) + Gg(S)G5(S)Hl(8)H2(S) ’

For loop 1, we have

di 1
Ryi1 + Llﬂ + — /(’Ll — ’iQ)dt + Rg(il — ig) = ’U(t) .
dt &

And for loop 2, we have

1 ) dio . . 1 . .
— dt+Ls— + R — —/ —11)dt =0
02 /22 + 2 dt + 2(22 21) + 01 (12 Zl)

The transfer function from R(s) to P(s) is

P(s) 4.2

R(s) 83 +2s24+4s5+42"°

The block diagram is shown in Figure E2.16a. The corresponding signal
flow graph is shown in Figure E2.16b for

4.2
P(s)/R(s) = s34+ 282 445 +4.2
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v4(s) V5(s) 1
R(s) o 7 | 06 vy
- s s=+2s5+4
(a)
0.6 ;
1 V1 7 Vz S— s24+2s+4
R(s) P(s)
(b)
FIGURE E2.16

(a) Block diagram, (b) Signal flow graph.

A linear approximation for f is given by

Af = of Ax = 2kx,Ax = kAx

or|,_,,

where z, = 1/2, Af = f(x) — f(z,), and Az =z — x,.

The linear approximation is given by

Ay = mAx
where
m = @
- Oz oy

»P(s)

(a) When z, = 1, we find that y, = 2.4, and y, = 13.2 when z, = 2.

(b) The slope m is computed as follows:

_ %

- =1+4.222 .
m O + T,

T=To

Therefore, m = 5.2 at z, = 1, and m = 18.8 at z, = 2.
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E2.19 The output (with a step input) is

15(s +1)

YO = ey

The partial fraction expansion is
15 18 1 3 1

Y(s) = — — =2 2 .
) =1 " 7337 T2s513

Taking the inverse Laplace transform yields

15 18 _ 3 _
y(t) _ 2 - 2t )

= ﬂ 7 e + 56
E2.20 The input-output relationship is

Vo AK-1)
V 1+ AK
where
K=_2
Z1+ Zs

Assume A > 1. Then,

where

R1 R2

== d Zg=——.
! RiCis+1 an 2 RyCos +1
Therefore,

Vo(s)  Ra(RiCis+1) 2(s+1) '

V(s)  Ri(RCas+1)  s+2
E2.21 The equation of motion of the mass m,. is
meiy + (bg + bs)Tp + kaxp = bakin + kaxin, -
Taking the Laplace transform with zero initial conditions yields
[mes?® + (b + bs)s + ka) Xp(s) = [bas + ka) Xin(s) -
So, the transfer function is

Xp(s) bas + kq . 0.7s+2
Xin(s)  mes2+ (bg+bs)s+ kg s2+285+2°
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E2.22 The rotational velocity is

2(s+4) 1

BER IR

FExpanding in a partial fraction expansion yields

_81+1 1 3 1 13 1
~ 5s 40s+5 2(s+1)2 8s+1°

w(s)

Taking the inverse Laplace transform yields

8 1 3 13
w(t) = st 4—06_5t - ite_t - ge_t .

E2.23 The closed-loop transfer function is
Y(S) K1K2

= s) = .
R(S) ( ) 82+(K1 —|—K2K3—|—K1K2)S+K1K2K3

E2.24 The closed-loop tranfser function is

Y(s) ... 10
R(s) T(s) = s2+21s+10 "

E2.25 Let 2 = 0.6 and y = 0.8. Then, with y = az3, we have
0.8 = a(0.6)% .
Solving for a yields a = 3.704. A linear approximation is
Y — Yo = 3ax(x — z,)
or y = 4x — 1.6, where y, = 0.8 and x, = 0.6.
E2.26 The equations of motion are

midy + /{(1‘1 — 332) =F
moio + k(xg —x1) =0 .

Taking the Laplace transform (with zero initial conditions) and solving
for Xs(s) yields

k

Xals) = (mos? + k)(mys? + k) — k2

F(s) .

Then, with m; = my = k = 1, we have

1

Xa(s)/F(s) = 2 =12



34

E2.27

E2.28

E2.29

E2.30

CHAPTER 2 Mathematical Models of Systems
The transfer function from Ty(s) to Y (s) is

Y(s)/Tals) = 1+CC;12C(¥Z)H(3) '

The transfer function is

VO(S) _ R2R4CS R2R4

— 245 + 144 .
V(s) Rs iRy T
(a) If
G(s) = _ and H(s)=2s+15
~ $24 155+ 50 N '

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

1

T(s)= — —
&)= Z 7116

(a) The closed-loop transfer function is

G(s) 1 10 10

=17 BE = where G(s) =

T =
() s(s% 1 25 + 20) s2 1 25+ 10

0.8

0.71

0.6

051

0.4r

Amplitude

031

0.2r

011

Time sec

FIGURE E2.30
Step response.
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(b) The output Y(s) (when R(s) =1/s) is

~ 05 —0.25+0.0573j  —0.25 —0.0573;
s s+1-4.35895 s+ 1+4.35895

Y(s)
(c) The plot of y(t) is shown in Figure E2.30. The output is given by

1 1
t)==[1—¢t (cos V19t — —=sin Vv 1975)]
v =3 [ V19
E2.31 The partial fraction expansion is
a b

V(s) = +
s+p1 S+p2

where p; =4 — 19.65 and py = 4 + 19.65. Then, the residues are
a=-102j b=10.27.
The inverse Laplace transform is

v(t) = —10.25eTAH196t 1 10.25e(—17196)E — 90 4e~ 5in 19.6¢ .
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P2.1

P2.2

P2.3
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The integrodifferential equations, obtained by Kirchoff’s voltage law to
each loop, are as follows:

d(iy — i2)

1
Ry — [ 1dt + L
121—1—01/11 + Ly I

+ Ry (i1 —i2) = v(t) (loop 1)

and

d(ig —i1)

7 =0 (loop 2).

1
R3io + o /igdt + Ro(ia —i1) + L1
2

The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have
My + ki2(y1 — y2) + bjn + kwyy = F(t)
Maijs + ki2(y2 —y1) = 0.

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.2, where C; — M; , Ly — 1/ky, L1o — 1/ki2 , and R — 1/b .

1 c,
F(©) D S— R ng 2

FIGURE P2.2
Analagous electric circuit.

The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

Miq + kx1 + /{(1‘1 — 33‘2) = F(t)
Mig + k(ze — 1) + bia =0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C—-M L—1/k R—1/b.
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FIGURE P2.3

L

F(©) D

Y

Analagous electric circuit.

P24

ure P2.4(a).

(b) The linear approximation around v, = 1

ure P2.4(b)

0.4

03[

0.2

\'e]

linear approximation

FIGURE P2.4
Nonlinear functions

0.5 1

and approximations.

Vo

(a) The linear approximation around v,

35

25

0.5

-0.5

0 is v,

is v, = 2v, —

37

= 0v;n, see Fig-

1, see F

ig-

/

linear approximation

vin
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P2.5

P2.6
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Given
Q=K(P —P)"%.

Let 6P = P, — P, and 6P, = operating point. Using a Taylor series
expansion of (), we have

0Q
Q=0Q,+ —= 0P —6P,) + -
D0P | or, )
where
oQ K _.__
_ 1/2 oy _Lsp12
Qo= K6P, and 6P|,y 200

Define AQ = Q — Q, and AP = §P — )F,. Then, dropping higher-order
terms in the Taylor series expansion yields

AQ = mAP
where
K
YT e

From P2.1 we have

d(ip —i2)

7 + Ry(ip —i2) = v(t)

1
Ryiy + a /ildt + Ly

and

d(iag —1i7)

=0.
dt

1
Rsio + ?/Zédt + Rg(ig - ’il) + L
2

Taking the Laplace transform and using the fact that the initial voltage
across Cy is 10v yields

1
[Ri+ 5+ Lis+ Ra]li(s) + [~ Rz — Lis|la(s) = 0
1
and

1 10
[—RQ — Lls]Il(s) + [Lls + Ry + — + RQ]IQ(S) = -
Csys s

Rewriting in matrix form we have

Ry + & + Lis + Ry —Ry—Lys

—RQ—Lls L18+R3+CL28+R2
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Solving for I yields

N(s) \ 1| Lis+Rs+ g5+ Ro Ry + Lys 0
I(s) A Ry + Lis Ri+ &=+ Lis+ R ~10/s
or
—10(R, +1/Cys+ Lis+ R
ne) = YO b+ )
where

1 1
A= (R +——+4Lis+ Ry)(L1s+ R3 + — + Ry) — (Ro + Lys)* .
Cis Css

P2.7 Consider the differentiating op-amp circuit in Figure P2.7. For an ideal
op-amp, the voltage gain (as a function of frequency) is

ZQ(S)
Va(s) = — =22y,
where
Ry
= —
" 14 RCs

and Zo = Ro are the respective circuit impedances. Therefore, we obtain

Vi) = - [ i),

1 Z
2
C R,
+ R1 ——O +
Vi(s) V,(s)
O _L O

FIGURE P2.7
Differentiating op-amp circuit.
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P2.8 Let
Go+Cs —C's -Gy
A= —C's G1+2Cs —C's
—G2 —C's Cs+ G2
Then,
Agj Vs ApL/A
V. — J I _— = —
ITTAY Y Y T AL A
Therefore, the transfer function is
—Cs 2Cs+ Gy
V- JARE: —Ga —Cs
1 1 2Cs + Gy —C's
—C's Cs+ G2
Pole-zero map (x:poles and o:zeros)
3
2+ o
‘I |
S o x
£
_'I .
260 o
-3 i i i i
-8 -7 -6 -5 -4 3 2
Real Axis
FIGURE P2.8

Pole-zero map.




P2.9

Problems 41

o 02R1R282 +2CR1s+1
~ C2RyRys? + (2R + Ry)Cs +1

Using R = 0.5, Ry =1, and C' = 0.5, we have

s2+4s+8  (s+2+2))(s+2—29)
T(s) = — = .
s?2+8s+8  (s+4+V8)(s+4—B)

The pole-zero map is shown in Figure P2.8.

From P2.3 we have

Mz + kxy + k(xy — z2) = F(t)
Mo —|—k(1‘2 —331) +bry=0.

Taking the Laplace transform of both equations and writing the result in

matrix form, it follows that
Xi(s) | [ F(s)
Xo(s) o )’

Pole zero map

Ms? + 2k —k
—k Ms? +bs+k

0.4 T
03 -
02 0] 4
x
0.1 -
)
<
= OF |
©
£
-0 - -
X
0.2 Q -
-03 [~ -
X
04 I I I I I
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
Real Axis
FIGURE P2.9

Pole-zero map.
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()=
Xo(s) A

where A = (Ms? + bs + k)(Ms? 4 2k) — k? . So,

or

Ms?> +bs+k k
k Ms? + 2k

8

S 82 S

When b/k =1, M =1, b*/Mk = 0.04, we have

24 0.04s + 0.04
s% 4+ 0.04s3 + 0.12s2 + 0.0032s + 0.0016

G(s) =

The pole-zero map is shown in Figure P2.9.
From P2.2 we have
Mgy + k12(y1 — y2) + by + kiyr = F(2)
Msijo + k12(y2 —y1) = 0.

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that

M, 8% 4 bs + ki + k1o —k1o ( Yi(s) ) - ( F(s) )
{ —k12 Mys? + ko Ya(s) N 0
or
Yi(s) \ 1 | Mas®+ ko K12 F(s)
(YQ(S) ) Ak Mis?4bs+kr+ ki ( 0 )
where

A= (M282 + klg)(M1$2 + bs + k1 + ki2) — k%Q .
So, when f(t) = asinw,t, we have that Y7(s) is given by

aMaow,(s% + k1o /M.
() = el e )

For motionless response (in the steady-state), set the zero of the transfer
function so that

k‘12 kf12
(82+E):82+w3 or wizm .
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P2.11 The transfer functions from V,(s) to Vy(s) and from Vy(s) to 6(s) are:

K1K»
(Lgs + Ry)(Les + Re)
Km
(Js?2+ fs)((Lg+ La)s + Ry + Ry) + K3sKps

The block diagram for 6(s)/V,.(s) is shown in Figure P2.11, where

Va(s)/Ve(s) = ,and

0(s)/Va(s) =

o 9(8) Vd(S) o KlKgKm
OV = e T A

where

A(s) = s(Les+ Re)(Lgs+ Rq)((Js +b)((La+ La)s + Ry + Ra) + K K3) .

lq Vyg L T w
Vel 1Ll Ky |l 1| ik, —i@—»é - 1
L es+Re L g+Rq (L ¢+L Js+Ra+Ra [ Km [— Jo+f - —=d

VbT
K3

wl=

A

FIGURE P2.11
Block diagram.

P2.12 The open-loop transfer function is

Y(s) K
R(s) s+20°
With R(s) =1/s, we have
K
Y(s) = ST 20)

The partial fraction expansion is

K /1 1
Vis)= = (= -
(5) 20(5 s+20>’

and the inverse Laplace transform is

y(t) = 5 (1),

As t — o0, it follows that y(t) — K/20. So we choose K = 20 so that y(t)
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P2.13

P2.14
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approaches 1. Alternatively we can use the final value theorem to obtain

. K
Y(t)t—o00 = 21_1% sY(s) = 50 1.

It follows that choosing K = 20 leads to y(¢) — 1 as t — oo.

The motor torque is given by

Ty (5) = (Jms® + byns)Om(s) + (Jps® + brs)nb(s)
= n((Jns% 4 bms)/n? + Jrs® 4+ bps)0L(s)

where
n =10r(s)/0n(s) = gear ratio .
But
Tin(s) = KmIg(s)
and
I,(s) = ! Vy(s)
P (Lyg+ Ly)s+ Ry + Ry 977
and
K
V, = K,I =—9 V .
5(s) oLy (s) Ry + Lys 7(s)
Combining the above expressions yields
Or(s) KoK,
Vi(s)  nAi(s)Ax(s)
where
I s>+ by,
Aq(s) = Jrs? +brs + $
n
and

Aa(s) = (Lgs + Lys + Ry + Ry)(Ry + Lys) -
For a field-controlled dc electric motor we have

Km/Rf

wl(s)/Vy(s) = 2oL
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With a step input of Vy(s) = 80/s, the final value of w(t) is

. 80K, K,,
W(t)tsoo = 21_13% sw(s) = R =24 or Ryb =0.03 .
Solving for w(t) yields
80K, g 1 80K, _ _
t) = —= = " (1—e /DY = 2. 4(1—e~ /)
w(t) R;J {8(3 ¥ b/J)} Rsb (1-e ) (1=e )

At t=1/2, w(t) =1, so
w(1/2) =241 —e /) =1 implies b/.J = 1.08 sec .
Therefore,
0.0324
w(s)/Vy(s) = 1108

Summing the forces in the vertical direction and using Newton’s Second
Law we obtain

k
T4+ —x=0.
m

The system has no damping and no external inputs. Taking the Laplace
transform yields

oS

X = 2 m

)

where we used the fact that z(0) = 9 and #(0) = 0. Then taking the
inverse Laplace transform yields

| k
t) = —1 .
x(t) = zo cos -

Using Cramer’s rule, we have

L))

or
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where A = 4(1) — 2(1.5) = 1 . Therefore,

4(6) — 1.5(11) —2(6) + 1(11)

T = 1 =75 and zo = 1 =—-1.
The signal flow graph is shown in Figure P2.16.
11
6
FIGURE P2.16
Signal flow graph.
So,
6(1) — L.5(4 11(5) + 5H(6
;1:1:—() 3(4):7.5 and g = (x) 32():—1.
1—3 1—3

(a) For mass 1 and 2, we have

Mz + Kl(aj‘l — .1‘2) + bl(i‘g — .1"1) =0
Myio + Kg(m’g — 1’3) + bg(i’g — ig) + Kl(m’g — xl) =0.

(b) Taking the Laplace transform yields

(Mys* + bys + K1) X1(s) — K1 Xa(s) = b1sX3(s)
= (

—Kle(S) + (M282 + bgs + Kl + KQ)XQ(S) b28 + KQ)Xg(S) .
(c) Let
Gi(s) = Ko + bys
Ga(s) = 1/p(s)
Gs(s) =1/q(s)
Gy(s) = sby
where
p(s) = 2 Mo + sfo + K1 + Ko
and

q(s) = 82M1 + Sf1 + Kl .



FIGURE P2.17
Signal flow graph.

P2.18

FIGURE P2.18
Signal flow graph.

P2.19
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The signal flow graph is shown in Figure P2.17.

(d) The transfer function from X3(s) to Xi(s) is

Xi1(s) _ K1G1(s)Ga(s)Gs(s) + Ga(s)G3(s)
X3(s) 1 — K2Go(s)G3(s) '

The signal flow graph is shown in Figure P2.18.

The transfer function is

Va(s) _ Y12:Y37,
Vi(s) 1+ Y129+ Y329 + Y324 + Y122 2,Y3

For a noninerting op-amp circuit, depicted in Figure P2.19a, the voltage
gain (as a function of frequency) is

where Z;(s) and Zs(s) are the impedances of the respective circuits. In
the case of the voltage follower circuit, shown in Figure P2.19b, we have
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(a)

FIGURE P2.19
(a) Noninverting op-amp circuit. (b) Voltage follower circuit.

Z1 = oo (open circuit) and Zy = 0. Therefore, the transfer function is

VO(S) _ é _ 1
‘/zn(s) N A o

P2.20 (a) Assume R, > R, and R, > R;. Then Ry = R; + Ry = Ry, and

Vgs = Vin — Vo

where we neglect i;,,, since R, > R,. At node S, we have

22 = GVgs = G (Vin — Vo) OF Yo _ _mbls
RS mbvgs m m o ’UZn 1+ngs .

(b) With g,, Rs = 20, we have
20

vo _ 20 _
v o1 0.95 .

(¢c) The block diagram is shown in Figure P2.20.

Vins) ZmRs

FIGURE P2.20
Block diagram model.

P2.21 From the geometry we find that

Az=kl1_l2($—y)——y.
I I
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The flow rate balance yields

A% = pAz which implies Y(s) =

pAZ(s)
As

By combining the above results it follows that

Y(s) = A% {k (ll l_l 12> (X(s) - Y(s)) — %Y(s)} .

Therefore, the signal flow graph is shown in Figure P2.21. Using Mason’s

FIGURE P2.21
Signal flow graph.

gain formula we find that the transfer function is given by

k(li—l2)p

Y(S) _ 11 As _ Kl
X(s) 1+ziiﬁ % s+ Ko+ Ky’
where
E(ly —lo)p lop
Ky =t 20 d Ky= -2 .
! LA P R2may

P2.22 (a) The equations of motion for the two masses are

- L\? L
ML%*0; + MgL6; + k 5 (61 — 62) = 5f(t)

2
ML?05 + MgLy + k (g) (62 —61) =0.

With 91 = wy and 92 = woy, we have

(9. k L0
“1—‘<z+m>91+m92+m

.k g k
@2 =it <L+4M)92'
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a <
F () Wy 9%
| 12ML > Vs [———— > 1/ >
A
-~
(a) b |<

\

w
07 Vs |——2 ol s RE

Imag(s)
A .
/+J £+ oM
g k
(b) TINC fam
\o
«~ )0
- > Re(s)

FIGURE P2.22
(a) Block diagram. (b) Pole-zero map.

(b) Define a = g/L + k/4M and b = k/4M. Then

b1(s) 1 s’ +a
F(s) 2ML (s?2+a)?2—b2"

(c) The block diagram and pole-zero map are shown in Figure P2.22.
P2.23 The input-output ratio, V./Viy,, is found to be

Vee  B(R—1)+hiRy
Vi B _/Bhre + hie(_hoe + Rf) '

P2.24 (a) The voltage gain is given by
Vo RppiB2(B + Ro)

Vin  (Ri+ Ra)(Ry + hie1) + Ri(Ry + Ra)(1+ 1) + RiRLB1S2
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(b) The current gain is found to be
1
<= = B1fs .
p1

(¢) The input impedance is

/Ull - (Rl + Rg)(Rg + hiel) + R1(R1 + Rg)(l + ,81) + R1RL,B1,62

1p1 Ry + Ry

)

and when (135 is very large, we have the approximation

Vin __ RpR1B1fo
ip1 Ri+ Ry

The transfer function from R(s) and Ty(s) to Y (s) is given by

(G(s)R(s) + Td(s))) + Ty(s) + G(s)R(s)

Also, we have that
Y(s)=0.

when R(s) = 0. Therefore, the effect of the disturbance, Ty(s), is elimi-
nated.
The equations of motion for the two mass model of the robot are
Mz +b(& —7) + k(x—y) = F(t)
my+by—2)+k(y—2z)=0.

Taking the Laplace transform and writing the result in matrix form yields

Ms*+bs+k  —(bs+k) X(s) F(s)
—(bs+k) ms?+bs+k Y (s) 0
Solving for Y'(s) we find that
Y(s) L (bs + k)

F(s)  s2[s24 (1+2) (%3 + %)] .
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The describing equation of motion is

,L'Q

mzZ=mg—k— .
z

Defining

f(Z,’L): _k—ZQ

mz2

leads to
2= f(z,i) .

The equilibrium condition for i, and z,, found by solving the equation of
motion when

z=2=0,
is
ki2
0222
mg

We linearize the equation of motion using a Taylor series approximation.
With the definitions

Az=2—2, and Ai=1i—1i,,

we have Az = z and Az = 3. Therefore,

of
0z

iy Az + ﬁ

Ni -
=i, 81

z=2z¢
1=l

Az = f(2,1) = [(20,i0) +

But f(20,70) = 0, and neglecting higher-order terms in the expansion
yields

2ki, .

2%ki2
Fio Az — A7 .

Az =

Using the equilibrium condition which relates z, to i,, we determine that

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

AZ(s) _ —gfio

Al(s)  s2—2g/z,
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P2.28 The signal flow graph is shown in Figure P2.28.

P2.29

FIGURE P2.28
Signal flow graph.

(a)

(d)

The PGBDP loop gain is equal to -abcd. This is a negative transmis-
sion since the population produces garbage which increases bacteria
and leads to diseases, thus reducing the population.

The PMCP loop gain is equal to +efg. This is a positive transmis-
sion since the population leads to modernization which encourages
immigration, thus increasing the population.

The PMSDP loop gain is equal to +ehkd. This is a positive trans-
mission since the population leads to modernization and an increase
in sanitation facilities which reduces diseases, thus reducing the rate
of decreasing population.

The PMSBDP loop gain is equal to +ehmed. This is a positive
transmission by similar argument as in (3).

Assume the motor torque is proportional to the input current

Ty =ki.

Then, the equation of motion of the beam is

Jo=ki,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mx = mgo — bt
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where m is the mass of the ball, b is the coefficient of friction, and we
have assumed small angles, so that sin ¢ &~ ¢. Taking the Laplace transfor
of both equations of motion and solving for X (s) yields

X(s)/I(s) = %%/i/m) .
Given
H(s) = 7'3]:— 1

where 7 = 4us = 4 x 107 seconds and 0.999 < k < 1.001. The step
response is

k 1k k

Y(s) = . — .
() Ts+1 s s s+1/7

Taking the inverse Laplace transform yields
y(t) =k —ke /T = k(1 —et/T) .

The final value is k. The time it takes to reach 98% of the final value is
t = 15.6us independent of k.
From the block diagram we have
Yi(s) = Ga(s)[G1(s)E1(s) + G(s) Ea(s)]
= Ga(s)G1(s)[Ri(s) — Hi(s)Y1(s)] + Ga(s)G3(s) Ea(s) -

Therefore,

_ G1(s)Ga(s) Ga(s)G3(s)
Yi(s) = 1+ Gi(s)Ga(s)Hi(s) 1(8) + 1+ Gi(s)Ga(s)Hi(s)

EQ(S) .

And, computing Fs(s) (with Ra(s) = 0) we find

Gy(s)

Es(s) = Ha(s)Ya(s) = Ha(s)Ge(s) Ga(s)

Yi(s) + Gs(s) Ea(s)

or

. G4(S)G6(S)H2(S) s
B0 Get - GG R ¢
Substituting Fs(s) into equation for Yj(s) yields

. Gl(S)GQ(S)
1+ Gi(s)Ga(s)Hi(s)

Yi(s) Ry(s)
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N G3(5)G4(s)Ge(s)Ha(s) ¥i(s)
(1+ G1(s)Ga(s)H1 () (1 — G5(s)Ge(s)Ha(s))

Finally, solving for Yj(s) yields
Yi(s) = Ti(s)Ri(s)
where

IH(S):Z
G1(s5)Ga(s)(1 — G5(s)Ge(s)Ha(s))
(1+ Gi(s)Ga(s)H1(s))(1 — G5(s)Ge(s)Ha(s)) — G3(s)Ga(s)Ge(s)Ha(s)

Similarly, for Y5(s) we obtain

Ya(s) = Ta(s)Ra(s) -

Gl (S)G4(S)G6(S)
(1+ Gi(s)G2(s)Hi(s))(1 = G5(5)Go(s)Hz(s)) — Ga(s)Ga(s)Go(s) Ha(s)

P2.32 The signal flow graph shows three loops:

L1 = -G1G3G4H,

Lo = —GoGsGgHy

Ly = —H{GsGsGoG7G4HyG .
The transfer function Y5/R; is found to be

YQ(S) _ G1G8G6A1 - GQGE,GGAQ
R1(3) 1-— (Ll + Loy + Lg) + (Lng) ’

where for path 1
A =1
and for path 2
Ag=1—-11.

Since we want Y3 to be independent of Ry, we need Y5/R; = 0. Therefore,
we require

G1GsGg — G2G5G6(1 + G1G3G4H2) =0.
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The closed-loop transfer function is

Y(S) Gg(S)Gl(S)(GQ(S) +K5K6)

R(s) 1—Gs(s)(Hi(s) + Ko) + G3(5)G1(5)(Ga(s) + K5 Kg)(Ha(s) + Kq)

The equations of motion are
madis + b(gh — J2) + k1(y1 —y2) =0
madia + 0(Y2 — 91) + k1(y2 — y1) + kaya = ko
Taking the Laplace transform yields

(m18% 4 bs + k1)Y1(s) — (bs + k1) Ya(s) = 0
(mas® + bs + ki + k2)Ya(s) — (bs + k1)Y1(s) = ko X (s)
Therefore, after solving for Y7i(s)/X(s), we have

Ya(s) _ ko (bs + k1)
X(s)  (m18%+bs+ k1)(mas? + bs+ ki + ko) — (bs + k1)2

(a) We can redraw the block diagram as shown in Figure P2.35. Then,

T(S) _ K1/8(8+ 1) _ Kl
14+ K1(14 Kas)/s(s+1)  s24+ (1+ KoKq)s+ Ky

(b) The signal flow graph reveals two loops (both touching):

—K; —Ki1Ky
L, = d Ly= .
! s(s+1) o 2 s+1
Therefore,
K 1 K
T(s) 1/s(s+1) _ 1

T1t Ki/s(s+ 1)+ KiKa/(s+1) 2+ (1+ KaK1)s+ K;
(¢) We want to choose K7 and K5 such that
s* 4+ (1 + KaKy)s + K1 = s> 4 20s + 100 = (s + 10)? .

Therefore, K1 =100 and 1+ KK = 20 or Ko = 0.19.
(d) The step response is shown in Figure P2.35.
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K -
R(s) + s (s+1) Y
1+Kys

1
0.9
0.8F
0.7F
06l <---- time to 90% = 0.39 sec

£ o5¢

041
03F
021
0.1k

Oo 02 o‘4 06 08 1 12 14 16 18 2

time(sec)

FIGURE P2.35
The equivalent block diagram and the system step response.

(a) Given R(s) = 1/s%, the partial fraction expansion is

Y(s) = 24 3 8/3 3/ 1 13/12
525 +2)(s+3)(s+4) s+2 s+3 s+4 s s

Therefore, using the Laplace transform table, we determine that the
ramp response is
13

8 3
y(t) = 3e 3¢ + 1€ + 50 t2 0
(b) For the ramp input, y(f) ~ 0.21 at ¢t = 1. second (see Figure P2.36a).

(c) Given R(s) =1, the partial fraction expansion is

¥(s) = 24 _ 1221
S (s+2)(s+3)(s+4) s+2 s+3 s+4

Therefore, using the Laplace transform table, we determine that the
impulse response is

y(t) =127 — 247 + 412" | t>0.
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(d) For the impulse input, y(t) ~ 0.65 at ¢ = 1 seconds (see Figure P2.36b).

(a) Ramp input

(b) Impulse input

2 ‘ , 0.8 : :
1.8}
0.7
1.6} ‘
0.6 :
14} |
|
0.5 i
1.2} :
|
g 1t Zo4 :
|
0.8} |
0.3 |
0.6} :
0.2 |
0.4 :
0.1 :
0.2 ‘ |
| |
0 1 i 0 1 i
0 1 2 1 2
Time (sec) Time (sec)
FIGURE P2.36
(a) Ramp input response. (b) Impulse input response.
The equations of motion are
d*z d?
mlW:—(k1+k2)x+k‘2y and mgﬁg =ko(x —y)+u.
When m; = mo =1 and ki = ky = 1, we have
d’x d%y
— = —2x+ and — =zxz—y+u.
dt? 4 a2 4
The equation of motion for the system is
d?6 df
J—+b— + k=0
dt? * dt + ’

where k is the rotational spring constant and b is the viscous friction
coefficient. The initial conditions are §(0) = 6, and §(0) = 0. Taking the
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Laplace transform yields
J(520(s) — s0,) + b(s0(s) — 0,) + kO(s) =0 .
Therefore,

(s + %90) _ (5 4 2Cwn)b,
(2+L2s+5) s+ 20wns +wf

0(s) =
Neglecting the mass of the rod, the moment of inertia is detemined to be
J=2Mr?>=0.5kg-m?.

Also,

k b
Wy = \/; =0.02rad/s and (= T 0.01 .

Solving for 6(t), we find that

0(t) = %C? e~ Sntsin(wp/1 — C2 t+¢) |

where tan ¢ = /1 — (2/(). Therefore, the envelope decay is

0@ = 790 €_<wnt .
Vi=¢
So, with Cw, = 2 x 107%, 6, = 4000° and 0y = 10°, the elapsed time is
computed as

1 0

t=—1I -
Con VI C20,

When t < 0, we have the steady-state conditions

= &.32 hours .

11(0) =1A | v,(0) =2V and wv.(0) =5V,

where v.(0) is associated with the 1F capacitor. After ¢ > 0, we have

i
2% + 201 + 4(iy — i) = 10”2

and

/igdt—i—lOig iy —iy) —i =0
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Taking the Laplace transform (using the initial conditions) yields

. 10 s+ 7
2(8[1—21(0))+2[1 +4Il—4.[2 = m or (84—3)[1(8)—212(8) = s+ 2

and
1
[;IQ—’UC(O)]+].0_[2+4(.[2—_[]_) =1Ii(s) or —5sli(s)+(14s+1)I2(s) = bs.

Solving for I5(s) yields
_ 5s(s? + 65+ 13)

I, =
2T T 14(s +2)A(>s)
where
s+ 3 —2
As) = = 145> + 335 + 3 .
—5s  14s+1
Then,

Vo(s) = 1015(s) .
The equations of motion are
Ji0) = K(0y — 61) —b(0; — 6o) +T and  Joby = b(6y — 65) .
Taking the Laplace transform yields
(J15% + bs + K)B1(s) — bsby(s) = Kb(s) + T(s)
and
(Jo5 + bs)Bo(s) — bsbi(s) =0 .
Solving for 6;(s) and 62(s), we find that

(K09(s) 4+ T(s))(J2s + b)
A(s)

91(8) =

where
A(s) = Ji1Jos® + b(Jy + Jo)s® + JoKs + bK .

Assume that the only external torques acting on the rocket are control
torques, T, and disturbance torques, Ty, and assume small angles, 6(t).
Using the small angle approximation, we have

h=V6
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JO=T.+ 1Ty,

where J is the moment of inertia of the rocket and V' is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

T.(s)=—-KH(s) ,

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.41.

+
~
+£
2
» |—=
N
n<<
e
«

H gesire=0

FIGURE P2.41
Block diagram.

(a) The equation of motion of the motor is

dw
T b
dt w

where J = 0.1, b = 0.06, and T,,, is the motor input torque.

(b) Given Ty,(s) = 1/s, and w(0) = 0.7, we take the Laplace transform
of the equation of motion yielding

sw(s) —w(0) + 0.6w(s) = 10T,

or

os) — 0T 10
~ s(s+0.6)

Then, computing the partial fraction expansion, we find that

A B 16.67 15.97
w(s) = — = - .
s s+ 0.6 S s+ 0.6

The step response, determined by taking the inverse Laplace trans-
form, is

w(t) = 16.67 — 15.97¢7%% = +>0.
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The work done by each gear is equal to that of the other, therefore
T =101 .

Also, the travel distance is the same for each gear, so
710, = ro0r, .

The number of teeth on each gear is proportional to the radius, or

r1Ny = roN7 .
So,
Om _ 12 _ N2
0 @ N’
and
N16,, = Naobp,
01 = %Hm =nb, ,
where
n = Ny /Ny
Finally,
T, 6 DN
T, O N2
The inertia of the load is
npLrt
g, =22 :

Also, from the dynamics we have
Ty = Jrws + brwo
and
Ty = nTy = n(Jpws + brws) .
So,

T = n2(JLo'J1 + wal) ,
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since
Wy = Nwy .
Therefore, the torque at the motor shaft is
T =T+ Ty =n*(Jpwn + brwi) + Jmdnr + bpw -

Let U(s) denote the human input and F(s) the load input. The transfer
function is

G(S) + KGl (S)
A(s)

GC(S) + KGl(S)

Pe= A®)

U(s) +

F(S) Y

where
A=14+GH(s)+ GiKBH(s)+ G.E(s) + G1KE(s) .

Consider the application of Newton’s law (>° F = ma). From the mass
m, we obtain

myiy = F — ki(z1 — x2) — by (21 — &2).
Taking the Laplace transform, and solving for X (s) yields

Xi(s) = P + st a(s)

where
Ay = mys® + bys + ki
From the mass m; we obtain
myiy = —koxo — bodo + k1(x1 — x2) + by (&1 — d2).
Taking the Laplace transform, and solving for Xs(s) yields

_ bis + ki 1(s)
As(s) ’

X2 (8)

where
Ag :=mys® + (by + bo)s + ki + ko.

Substituting X2 (s) above into the relationship fpr X (s) yields the trans-
fer function

Xi(s) _ Ay (s)

F(s)  Aq(s)Ag(s) — (bys + ky)?
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Using the following relationships

h(t) = /(1.69(t) — h(t))dt
w(t) = 0(t)
Jir(t) = Kmialt)
va(t) = 50ui(£) = 1044 (t) + vy(F)
é = K’Ub

we find the differential equation is

By (14 Ko Yy S sy
dt3 10JK ) dt2  10JK dt  J

Vg .

(a) The transfer function is

VQ(S) (1 -+ SR1C1)(1 + SRQCQ) '

Vl(s) Rngs
(b) When Ry = 100 k€2, Ry = 200 k2, C; = 1 pF and Cy = 0.1 pF, we
have
Va(s)  0.2(s 4 10)(s + 50)

Vi(s) s '

(a) The closed-loop transfer function is

_ G(s) 6205
1+ G(s) s+ 13s2 +1281s + 6205

T(s)

(b) The poles of T'(s) are sy = —5 and sp3 = —4 £ 535.
(¢) The partial fraction expansion (with a step input) is
~ 10122 0.0061 +0.07165 | 0.0061 —0.0716;5

Y(s) =1
(5) s+5 T st+4+43 s+4—j35

(d) The step response is shown in Figure P2.49. The real and complex
roots are close together and by looking at the poles in the s-plane we
have difficulty deciding which is dominant. However, the residue at
the real pole is much larger and thus dominates the response.
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1

09r-

08+

0.7 -

06+

05-

Amplitude

04r-

03r

02+

0.1+

0

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Time (secs)

FIGURE P2.49
Step response.

(a) The closed-loop transfer function is

14000

T(s)=— '
(s) 53 + 4552 + 3100s + 14500

(b) The poles of T'(s) are
s1=—5 and s23 = —20% 550.

(c) The partial fraction expansion (with a step input) is

~ 09655 1.0275  0.0310 — 0.03907 ~ 0.0310 + 0.0390;

Y
(s) s s+5 51204750 s+ 20 — 750

(d) The step response is shown in Figure P2.50. The real root dominates
the response.

(e) The final value of y(t) is
Yss = ll_% sY (s) = 0.9655 .
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Amplitude

0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2

Time (secs)

FIGURE P2.50
Step response.

P2.51 Consider the free body diagram in Figure P2.51. Using Newton’s Law
and summing the forces on the two masses yields
MyE(t) + bia(t) + kiz(t) = biy(t)
Maij(t) + b1y(t) + kay(t) = brz(t) + u(?)

FIGURE P2.51
Free body diagram.
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AP2.1

AP2.2

The transfer function from V'(s) to w(s) has the form

w(s) K,
V(s) Tms+1°

In the steady-state,

. K,, 5
Wes _llg%)s L‘ms+1] s i -

So,
K =70/5=14 .
Also,
w(t) = Vi K (1 — e7t/m)
where V(s) = V,,,/s. Solving for 7,,, yields

—t
In(1 — w(t)/wss)

Tm =

When t = 2, we have

-2

= % _357.
In(1 — 30/70)

Tm

Therefore, the transfer function is

w(s) 14
V(s) 357s+1°

The closed-loop transfer function form Rj(s) to Ya(s) is

YQ(S) _ G1G4G5(S) + G1G2G3G4Gﬁ(8)
R1(S) A

where
A = [1 + G3G4H2(8)H1 + G1G2H3(S)] .
If we select

Gs(s) = —G2G3Ge(s)

67

then the numerator is zero, and Y3(s)/Ri(s) = 0. The system is now

decoupled.
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AP2.3

AP24
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(a) Computing the closed-loop transfer function:

1 G)Gs)
o= i3 Gc<s>G<s>H<s>] R(s) -

Then, with E(s) = R(s) — Y (s) we obtain
(14 Ge(s)G(s)(H(s) —1)
26 =[S Gaeat )

If we require that E(s) = 0 for any input, we need 1+ G.(s)G(s)(H(s) —
1)=0or

G.(s)G(s) — 1 _ n(s)
Go(s)G(s d(s)

H(s) =

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less than or equal to the order of the denom-
inator polynomial, d(s). This will be true, in general, only if both G.(s)
and G(s) are proper rational functions (that is, the numerator and de-
nominator polynomials have the same order). Therefore, making £ = 0
for any input R(s) is possible only in certain circumstances.

(b) The transfer function from Ty(s) to Y(s) is

Ga(s)G(s)
14+ G(s)G(s)H(s)

Y(s) = { ] Tu(s) .

With H(s) as in part (a) we have

=[]

(c¢) No. Since

Ga(s)G(s)
1+ G.(s)G(s)H(s)

Y(s) = | | Tuts) = TTuts)

the only way to have Y (s) = 0 for any Ty(s) is for the transfer function
T'(s) = 0 which is not possible in general (since G(s) # 0).

(a) With ¢(s) = 1/s we obtain

T(s) = _ VG 1
8+%3/R S '
Define
a:zw and [:=1/C; .

Cy
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Then, it follows that

§1_=bla, Bla

s+a s S+« S

(s) =

Taking the inverse Laplace transform yields
T(t) = _—ﬁe_o‘t + s = é[l —e .

@ a o«

(b) As t — o0, 7(t) = & = oty

(c) To increase the speed of response, you want to choose Cy, @, S and
R such that

Vo Qs+ 1/R
=

is "large.”
Considering the motion of each mass, we have
Ms3is + bgis + ksxrs = ug + bgdo + k3o

Moo + (bQ + bg).i‘g + (k‘Q + k‘3).1‘2 = ug + b33 + ksxs + bod1 + koxq
Mz + (bl + bg).ij + (k‘l + k‘Q).I‘l = uy + body + koxo

In matrix form the three equations can be written as

M, O 0 21 i bi+ba b 0 1
0 My 0 o |+ —by by +b3 —b3 To
0 0 M T3 0 —b3 b3 i3

| ki + ke  —ko 0 x uy

+ —ko ko + ks —k3 To = | wus

0 —ks ks x3 ug

Considering the cart mass and using Newton’s Law we obtain
Mz =u—0bx — Fsinyp

where F' is the reaction force between the cart and the pendulum. Con-
sidering the pendulum we obtain

d?(x + Lsi
" (x + Lsinp)

72 = F'singp



70

AP2.7

AP2.8
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d?(L cos ¢)

m
dt?

= F'cosp + mg

Eliminating the reaction force F' yields the two equations
(m 4+ M)i + bi: + mLg cos o — mLp?sing = u
mL*@ 4+ mgLsin ¢ + mLi cos ¢ = 0
If we assume that the angle ¢ ~ 0, then we have the linear model

(m+ M)+ bt +mLy=mu

mL?p 4+ mgLy = —mLi

The transfer function from the disturbance input to the output is

1

Vis)= —
O =TT207 &

When T(s) = 1, we obtain

Td(S) .

y(t) _ e—(20+K)t ]

Solving for ¢t when y(t) < 0.1 yields

2.3
20+ K

When ¢t = 0.05 and y(0.05) = 0.1, we find K = 26.05.

t>

The closed-loop transfer function is

200K (0.25s + 1)

T($) = 0255 + (s + 1)(s + 8) + 200K

The final value due to a step input of R(s) = A/s is

200K

AP
v(t) = A 18

We need to select K so that v(t) — 50. However, to keep the percent
overshoot to less than 10%, we need to limit the magnitude of K. Fig-
ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06
and select the magnitude of the input to be A = 83.3. The inverse Laplace
transform of the closed-loop response with R(s) = 83.3/s is

v(t) = 50 4 9.85¢7 915 — 7193t (59 85 cos(2.241) + 11.27sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is
approximately 50 m/s, as shown in Figure AP2.8b.

25

10 N

Percent Overshoot (%)

0 i i i i i i i i i
0 0.01 002 003 0.04 005 006 007 0.08 0.09 0.1
K

Step Response

60 T T T T
| System: untitled1
50 | ‘Peak amplitude: 54.9 ]
Overshoot (%): 9.74
I Attime (sec): 1.15
|
401 ‘ .
3 I
k]
2 |
a L 4
g 0 |
<
|
|
20 | b
|
|
10 i q
|
|
0 . . . .
0 0.5 1 1.5 2 2.5

Time (sec)

FIGURE AP2.8
(a) Percent overshoot versus the gain K. (b) Step response.

AP2.9 The transfer function is
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where

Ry RyCys +1

VA = — d Z == .
1(8) R1018 + 1 an 2(8) 028

Then we can write

VO(S) K]

=K, — + K
‘/Z(s) P + s + DS

where

R1Cy ) 1
P <R202+ ) I D 201
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Design Problems

CDP2.1

DP2.1

DP2.2

The model of the traction drive, capstan roller, and linear slide follows
closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

T( ) rK,,
S) = s
$[(Lims + Rum)(J1s + b)) + Kp K]
where
Jp = Jom +12(M, + M) .
Vals) Lmls(i“Rm g JTslbm e I e R e C
K, <
Back EMF b

The closed-loop transfer function is

Y (s) _ G1(s)Ga(s)
R(s) 1+ Gy(s)Hy(s) — Go(s)Ha(s) -

When G1H; = GyHy and G1G2 = 1, then Y (s)/R(s) = 1. Therefore,
select
1 - GQ(S)HQ(S)

= an S) = ——F—F— = 2 S s) .
- GQ(S) d Hl( ) Gl(S) G2( )HQ( )

Gl (S)

At the lower node we have

1 1
-4+ = 219 —20=0.
v<4—|—3+G>+ 19 0=0
Also, we have v = 24 and i3 = Gv . So

1 1
U<Z+§+G>+2GU_20:0
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and

_20—v(§+§) ]

DP2.3 Taking the Laplace transform of
1 1
y(t)=e t——e_Qt—Z+§t
yields
1 1 3 1

Y(s) = . A
() s+1 4(s+2) d4s * 252

Similarly, taking the Laplace transform of the ramp input yields

Therefore

R(s)  (s+1)(s+2) "
DP2.4 For an ideal op-amp, at node a we have

Vin — VUq Vo — Vq
+ =0,
Ry Ry

and at node b
Vin — Up

Ry

=Cuy ,
from it follows that

1 1
— +Cs| Vo= =V, .
[Rz - 8] TR

Also, for an ideal op-amp, V; — V, = 0. Then solving for V}, in the above
equation and substituting the result into the node a equation for V yields

Vo 2

Vo_ 2 [1 m+Cs

Ry 2

or

Vo(s) _ ReCs—1
Vm(S) N RoCs+1 ’
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For v, (t) = At, we have Vj,(s) = A/s?, therefore

vo(t) = A Ee‘ﬁt +t— %}

where 8 = 1/RyC.

The equation of motion describing the motion of the inverted pendulum
(assuming small angles) is
. g
Zp=0.
©+ L‘P
Assuming a solution of the form ¢ = kcosp, taking the appropriate

derivatives and substituting the result into the equation of motion yields
the relationship

P = -
If the period is T' = 2 seconds, we compute ¢ = 27/T. Then solving for L
yields L = 0.99 meters when g = 9.81 m/s%. So, to fit the pendulum into
the grandfather clock, the dimensions are generally about 1.5 meters or
more.
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Computer Problems

CP2.1 The m-file script is shown in Figure CP2.1.

p=1 710l q=[1 2, | % 1 9 24
% Part (a) / P=
pg=conv(p,q) -5

% Part (b) / -2

P=roots(p), Z=roots(q)”] Z=
% Part (c) -2
value=polyval(p,-1) ———= value =
4
FIGURE CP2.1

Script for various polynomial evaluations.

20

CP2.2 The m-file script and step response is shown in Figure CP2.2.

numc = [1]; denc = [1 1]; sysc = tf(humc,denc)
numg = [1 2]; deng = [1 3]; sysg = tf(humg,deng)
% part (a)

sys_s = series(sysc,sysg);

sys_cl = feedback(sys_s,[1])

% part (b)

step(sys_cl); grid on -

Step Response
From: U(1)

Transfer function:
s+2

sA2+5s+5

04 T

Amplitude
To:Y(1)

Time (sec)

FIGURE CP2.2
Step response.
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CP2.3 Given
J+4y+3y=u
with y(0) =y = 0 and U(s) = 1/s, we obtain (via Laplace transform)
1 1

T s(s2+45+3) s(s+3)(s+1)

Y(s)

Expanding in a partial fraction expansion yields

1 1 1

Y(S):£_6(s+3)_2(3+1) '

Taking the inverse Laplace transform we obtain the solution
y(t) = 0.3333 + 0.1667e 3! — 0.5¢ 7" .

The m-file script and step response is shown in Figure CP2.3.

Step Response

0.35 T T T
0.3 i
0.25 .
g 02 n=[1]; d=[1 4 3]; sys = tf(n,d); y
2 t=[0:0.1:5];
g y =step(sys,t);
< 0151 | ya=0.3333+0.1667*exp(-3*t)-0.5*exp(-t); | |
plot(t,y,t,ya); grid;
01k title('Step Response’); |
' xlabel('Time (sec)’);
ylabel('Amplitude’);
0.05 .
O Il Il Il Il Il Il Il Il Il
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)
FIGURE CP2.3

Step response.
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CP2.4

CP2.5
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The mass-spring-damper system is represented by
mi+ bt +kr=f.

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

B 1/m

82 4+bs/m+k/m

X(s)/F(s)

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;
num=[1/m]; den=[1 b/m k/m]J;
sys = tf(num,den);
t=[0:0.1:150];

step(sys,t)

Step Response
From: U(1)

|
1
|
|
|
|
|
|
|
)
k] 1F g
3 _ i
=]
< " o8l | i
|
|
06 | ] g
|
04 | ! g
|
|
02 | | B
|
0 ! 1 1
0 50 100 150
Time (sec.)
FIGURE CP2.4

Step response.

The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
10° decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)

Spacecraft attitude (deg)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

%Part (a)

a=1; b=8; k=10.8e+08; J=10.8e+08;
num=k*[1 a];

den=J*[1 b 0 0]; sys=tf(num,den);
sys_cl=feedback(sys,[1]);

%

% Part (b) and (c)

t=[0:0.1:1001;

%

% Nominal case

f=10*pi/180; sysf=sys_cl*f;
y=step(sysf,t);

%

% Off-nominal case 80%

J=10.8e+08*0.8; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y1=step(sysf,t);

%

% Off-nominal case 50%

J=10.8e+08%0.5; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y2=step(sysf,t);

%
plot(t,y*180/pi,t,y1*180/pi,'--'t,y2*180/pi,""),grid
xlabel('Time (sec)")

ylabel('Spacecraft attitude (deg)")
title('Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)')

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6 The closed-loop transfer function is

 4s° 4 85° + 45" + 565” 4 1125* 4 565

T(s
(s) AG) :
p =
num1=[4]; den1=[1]; sys1 = tf(num1,den1); 7.0709
num2=[1]; den2=[1 1]; sys2 = tf(hum2,den2); -7.0713 .
num3=[1 0]; den3=[1 0 2]; sys3 = tf(hum3,den3); 1.2051 + 2.0863i
num4=[1]; den4=[1 0 0]; sys4 = tf(num4,den4); 1.2051 - 2.0863i
num5=[4 2]; den5=[1 2 1]; sys5 = tf(hum5,den5); 0.1219 + 1.8374i
num6=[50]; den6=[1]; sys6 = tf(num6,den6); 0.1219 - 1.8374i

num7=[1 0 2]; den7=[1 0 0 14]; sys7 = tf(hum7,den7); -2.3933
sysa = feedback(sys4,sys6,+1); / 22.3333

sysb = series(sys2,sys3); -0.4635 + 0.1997i
sysc = feedback(sysb,sys5); —0.4635 -0 .1997il
sysd = series(sysc,sysa); ’ ’
syse = feedback(sysd,sys7);

sys = series(sys1,syse) z=

% poles 0

pzmap(sys) 1.2051 + 2.0872i
% 1.2051 - 2.0872i
p=pole(sys) -2.4101
z=zero(sys) » -1.0000 + 0.0000i

-1.0000 - 0.0000i

Polezero map

Imag Axis
o
T
X
®
e}
o]
X
L

05 4

Real Axis

FIGURE CP2.6
Pole-zero map.
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where

A(s) = 104 357 — 4558 — 12557 — 200s° — 11775°
— 23445 — 348553 — 7668s% — 5598s — 1400 .

The m-file script and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

908

b6 = 2y g

To use the step function with the m-file, we can multiply the transfer
function as follows:

52 (90

f(s) = -0
() s24+g/L s’

which is equivalent to the original transfer function except that we can
use the step function input with magnitude 6y. The nonlinear response
is shown as the solid line and the linear response is shown as the dashed
line. The difference between the two responses is not great since the initial
condition of fy = 30° is not that large.

30

6 (deg)
o

-20

L=0.5,m=1;9=9.8;

theta0=30;

% Linear simulation

sys=tf([1 0 0],[1 0 g/L]);

T [ytl=step(theta0*sys,[0:0.01:10]);

% Nonlinear simulation
[tynl]=ode45(@pend,t,[theta0*pi/180 0]);

plot(t,ynl(;,1)*180/pity,--);
xlabel('Time (s)')
ylabel(\theta (deg))

3
function [yd]=pend(t,y)
L=0.5;9=9.8;
yd(1)=y(2);
yd(2)=-(g/L)*sin(y(1));
yd=yd’;

-30

FIGURE CP2.7

Time (s)

Plot of 0 versus xt when 6y = 30°.
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CP2.8 The system step responses for z = 5,10, and 15 are shown in Fig-
ure CP2.8.

z=5 (solid), z=10 (dashed), z=15 dotted)
1.5 T T T T T

()

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)

FIGURE CP2.8
The system response.

CP2.9 (a,b) Computing the closed-loop transfer function yields

G 24 2s+1
T(s) = (s) _ s 2+ '
1+ G(s)H(s) s2+4s+3
The poles are s = —3, —1 and the zeros are s = —1, —1.

(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

s+1
 s+3°
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Pole?Zero Map

83

Imaginary Axi s
o
o

T

1

ng=[11]; dg=[1 2J; sysg = tf(ng,dg);
nh=[1]; dh=[1 1]; sysh = tf(nh,dh);

?-15
Real Axi s

sys=feedback(sysg,sysh)
%

pzmap(sys)

%

poles

\

pole(sys)
zero(sys)

FIGURE CP2.9
Pole-zero map.

zeros

2-0.5

>>

Transfer function:

SAN24+2s+1

sN2+4s+3

-3
-1

-1
-1

Figure CP2.10 shows the steady-state response to a unit step input and a
unit step disturbance. We see that K = 1 leads to the same steady-state

response.
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K=[0.1:0.1:10];

sysg=tf([11,[1 20 20]);

for i=1:length(K)
nc=K(i); dc=[1];sysc=tf(nc,dc);
syscl=feedback(sysc*sysg,1);
systd=feedback(sysg,sysc);
y1=step(syscl);
Tf1(i)=y1(end);
y2=step(systd);
Tf2(i)=y2(end);

end

plot(K,Tf1,K,Tf2,--")

xlabel('K")

ylabel('Steady-state response’)

Steady-state response

FIGURE CP2.10
Gain K versus steady-state value.

0.35

0.25

0.2

0.15

0.1

0.05 —

Input Response Steady-State —_




