
CHAPTER 2

First-Order Differential Equations

2.1 SEPARABLE EQUATIONS
According to historians of mathematics, Leibniz implicitly discovered the method of separation
of variables in 1691, but John Bernoulli should be credited with the explicit process and the
name (separatio indeterminatarum) in 1694. [See Ordinary Differential Equations by E. L. Ince
(Dover Publications, 1956).]

Determining whether a differential equation is separable is often a test of a student’s algebraic
skills. A paper by D. Scott [Amer. Math. Monthly 92 (1985), 422–423] contains conditions that
ensure separability: Suppose that in D, an open convex set in the plane [an open disk in the
x-y plane will do], f , fx, fy , and fxy exist and are continuous, f (x, y) �= 0, and f (x, y)fxy(x, y) =
fx(x, y)fy(x, y) holds, then there exist continuously differentiable functions g(x) and h(y) such
that, for every (x, y) in D, f (x, y) = g(x)h(y). Here the subscripts denote partial derivatives.
A partial converse holds. Try the theorem on Exercise A10 or on f (x, y) = 2x2 + y − x2y + xy −
2x − 2, which is separable.

The method of separation of variables is the one most students may have seen in a calculus
course. I find it useful to review partial fractions via examples such as Example 2.1.6. You
may want to introduce students to the partial fractions capabilities of your CAS. Maple, for
example, has the convert command, with the parfrac option. Also, I emphasize the need
to watch out for singular solutions. With respect to the autonomous equations introduced in
Section 2.4, these singular solutions are equilibrium solutions (Section 2.6), important for the
qualitative analysis of differential equations. I have not seen a CAS ODE solver that produces
singular solutions.

The substitution methods described after Exercises A11 and A14 are two classical change
of variable techniques (tricks?) for converting certain equations whose variables are not
separable into separable equations.

Exercise C3 concerns the catenary. Exercise C6 asks the student to work analytically with a
basic form of the logistic equation, which will be discussed qualitatively in Section 2.5.
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14 CHAPTER 2: First-Order Differential Equations

A

1. dy
dx = A−2y

x ⇒ dy
A−2y = dx

x ⇒ ∫ dy
A−2y = ∫ dx

x ⇒ −1
2 ln |A − 2y| = ln |x| + C1 ⇒

ln |A − 2y| = −2 ln |x| + C2 = ln
(

1
x2

)
+ C2 ⇒ (exponentiating)|A − 2y| = C3

x2 ,

where C3 > 0 ⇒ A − 2y = C4
x2 , where C4 is arbitrary ⇒ y = 1

2

(
A − C4

x2

)
= A

2 + C
x2 .

Note that C = −C4/2 can be any real number if C4 can be any real number.

2. dy
dx = −xy

x+1 ⇒ dy
y = −x dx

x+1 ⇒ ∫ dy
y = − ∫ x dx

x+1 = − ∫
(x+1)−1

x+1 dx = − ∫ (
1 − 1

x+1

)
dx =

− ∫
1dx + ∫ dx

x+1 ⇒ ln |y| = −x + ln |x + 1| + C1 ⇒ |y| = e−x · eln |x+1| · eC1 = C2|x +
1|e−x ⇒ y = C(x + 1)e−x.

3. y′ = 3 3
√

y2 ⇒ dy
dt = 3

(
y

2
3

)
⇒ dy

y
2
3

= 3 dt ⇒ ∫
y− 2

3 dy = 3
∫

1 dt ⇒ 3y
1
3 = 3t + C1 ⇒

y
1
3 = t + C2 ⇒ y = (t + C2)3. Now the initial condition y(2) = 0 implies that 0 =

(0 + C2)3, so that C2 = −2. Therefore, y = (t − 2)3 = t3 − 6t2 + 12t − 8. But notice that
in separating the variables we divided by a power of y. The solution y ≡ 0 is a singular
solution of the basic ODE and satisfies the initial condition.

4. dy
dx = (y−1)(y−2)

x ⇒ dy
(y−1)(y−2)

= dx
x ⇒ ∫ dy

(y−1)(y−2)
= ∫ dx

x ⇒ ∫ ( 1
y−2 − 1

y−1

)
dy = ∫ dx

x ⇒
ln |y − 2| − ln |y − 1| = ln |x| + C1 ⇒ ln

∣∣∣ y−2
y−1

∣∣∣ = ln |x| + C1 ⇒
∣∣∣ y−2

y−1

∣∣∣ = C2|x| ⇒ y−2
y−1 =

Cx ⇒ y = 2−Cx
1−Cx . Since we divided by y−1 and y−2, we must check for singular solutions.

The solution y ≡ 2 can be obtained by choosing C = 0, but there is no value of C for
which (2 − Cx)/(1 − Cx) = 1. Thus y ≡ 1 is a singular solution.

5. (cot x)y′ + y = 2 ⇒ (cot x) dy
dx = 2 − y ⇒ dy

2−y = dx
cot x = tan x dx ⇒ ∫ dy

2−y = ∫
tan x dx ⇒

− ln |2 − y| = − ln | cos x| + C1 ⇒ ln |2 − y| = ln | cos x| + C2 ⇒ |2 − y| = C3| cos x| ⇒
2 − y = C4 cos x, so that y = 2 − C cos x. The initial condition implies that −1 = y(0) =
2 − C cos(0) = 2 − C, so that C = 3 and y = 2 − 3 cos x. The only possible singular
solution is y ≡ 2, but this can be obtained by letting C = 0.

6. dx
dt = − sin t cos2 x

cos2 t ⇒ dx
cos2 x = − sin t

cos2 t dt ⇒ ∫ dx
cos2 x = ∫ − sin t

cos2 t dt ⇒ ∫
sec2 x dx =∫

(cos t)−2(−sin t)dt ⇒ tan x = −(cos t)−1 + C1. At this point we can use the initial
condition: tan x(0) = −(cos 0)−1 + C1, or tan 0 = 0 = −1 + C1, so that C1 = 1.
Then tan x = −(cos t)−1 + 1 ⇒ x(t) = arctan

(− 1
cos t + 1

) = arctan
(−1+cos t

cos t

) =
− arctan

(1−cos t
cos t

)
.

7. x2y2y′ + 1 = y ⇒ x2y2 dy
dx = y − 1 ⇒ y2

y−1 dy = dx
x2 ⇒ ∫ y2

y−1 dy = ∫ dx
x2 ⇒∫ (

y + 1 + 1
y−1

)
dy = ∫

x−2dx ⇒ y2

2 + y + ln |y − 1| = −1
x + C. The constant func-

tion y ≡ 1 is a singular solution. (We divided by y − 1 earlier. Notice that the implicit
solution formula is not defined for y = 1.)

8. xy′ + y = y2 ⇒ x dy
dx = y2 − y = y(y − 1) ⇒ dy

y(y−1)
= dx

x ⇒ ∫ dy
y(y−1)

= ∫ dx
x ⇒∫ ( 1

y−1 − 1
y

)
dy = ∫ dx

x ⇒ ln|y − 1| − ln|y| = ln|x| + C1 ⇒ ln
∣∣∣ y−1

y

∣∣∣ = ln|x| + C1 ⇒∣∣∣ y−1
y

∣∣∣ = C2|x|, where C2 > 0 ⇒ y−1
y = Cx ⇒ y = 1

1−Cx . Using the initial condition,

we find that 0.5 = y(1) = 1/(1 − C), so that C = −1 and y = 1
1+x . Note that the
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basic equation has y ≡ 0 as a singular solution. In separating variables, we divided
by y(y − 1), but y = 1 can be obtained by letting C = 0 in the one-parameter
solution formula. These constant solutions don’t satisfy the given initial condition,
however.

9. dz
dx = 10x+z = 10x10z ⇒ dz

10z = 10xdx ⇒ ∫ dz
10z = ∫

10xdx ⇒ − 1
ln 10 10−z = 1

ln 10 10x +
C1 ⇒ 10−z = −10x + C ⇒ −z ln10 = ln

(
C − 10x

) ⇒ z = ln(C−10x)
ln 10 . Note that for each

particular value of the parameter C, the solution is defined only for 10x < C—that is,
for x < ln C/ ln 10 (or x < log10 C).

10. dy
dx = 1 + x + y2 + xy2 = 1 + x + y2(1 + x) = (1 + x)

(
1 + y2

) ⇒ dy
1+y2 = (1 + x)dx ⇒∫ dy

1+y2 = ∫
(1 + x)dx ⇒ arctan y = x + x2

2 + C ⇒ y = tan
(
x + x2

2 + C
)

.

11. (y′)2 + (x + y)y′ + xy = 0 ⇒ (y′ + x)(y′ + y) = 0 ⇒ y′ + x = 0 or y′ + y = 0 ⇒ dy
dx = −x

or dy
dx = −y ⇒ y = − x2

2 + C or y = Ce−x.
12. y′ − y = 2x − 3 ⇒ y′ = y + 2x − 3. Letting z = y + 2x − 3, we have dz

dx = y′ + 2 =
(y +2x −3)+2 = z +2. Separating variables, we see that dz

z+2 = dx, and integrating gives
us ln |z + 2| = x + C1, |z + 2| = C2ex, z + 2 = Cex, so that z = Cex − 2. Replacing z by
y + 2x − 3, we conclude that y = Cex − 2x + 1.

13. (x+2y)y′ = 1 ⇒ y′ = 1
x+2y . Letting z = x+2y, we have dz

dx = 1+2y′ = 1+ 2
x+2y = 1+ 2

z =
z+2

z . Separating variables, we get z
z+2 dz = dx, or

(
1 − 2

z+2

)
dz = dx, and integrating

gives us z − 2 ln |z + 2| = x + C1. Replacing z by x + 2y, we have x + 2y − 2 ln |x +
2y + 2| = x + C1.

There is no member of this one-parameter family of solutions that satisfies the Initial
condition y(0) = −1. However, because we divided by z + 2 = x + 2y + 2 in separating
variables above, we have a singular solution y = −(x + 2)/2, which also satisfies the
initial condition.

14. y′ = √
4x + 2y − 1. Letting z = 4x+2y−1, we have dz

dx = 4+2y′ = 4+2
√

4x + 2y − 1 =
4 + 2

√
z. Separating variables and integrating, we have

∫ dz
4+2

√
z

= ∫
dx. If we let z = u2

in the first integral, then dz = 2u du and the last equation becomes
∫ 2u

4+2udu =∫
dx,

∫ u
2+u du = ∫

dx,
∫ (

1 − 2
2+u

)
du = x + C1, u − 2 ln |2 + u| = x + C1. Replacing u by√

z = √
4x + 2y − 1, we get our final answer:

√
4x + 2y − 1 − 2 ln

∣∣√4x + 2y − 1 + 2
∣∣ =

x + C. Of course, you could have let z2 = 4x + 2y − 1 immediately, so that 2z dz
dx =

4 + 2y′ = 4 + 2z, etc.

15. y′ = x+y
x−y = x

(
1+ y

x

)
x
(
1− y

x

) =
(
1+ y

x

)(
1− y

x

) . Now let z = y/x. As in the example, y′ = z + x
(

dz
dx

)
, so

that the original equation becomes z + x
(

dz
dx

)
= 1+z

1−z , or x
(

dz
dx

)
= 1+z

1−z − z = 1+z2

1−z .

Separating variables, we get
(

1−z
1+z2

)
dz =

(
1

1+z2 − z
1+z2

)
dz = dx

x . Integrating, we find that

arctan z − 1
2 ln

∣∣1 + z2
∣∣ = ln |x| + C. Replacing z by y/x, we get the solution arctan

( y
x

) −
1
2 ln

(
x2+y2

x2

)
− ln |x| − C = 0.
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16. ẋ = t−3x
3t+x = t(1−3 x

t )
t(3+ x

t )
= (1−3 x

t )
(3+ x

t )
. Now let z = x/t, so that dx

dt = z + t
(

dz
dt

)
and the equation

becomes z + t
(

dz
dt

)
= 1−3z

3+z , or t
(

dz
dt

)
= 1−6z−z2

3+z . Separating variables and integrating,

we get
∫ z+3

z2+6z−1 dz = − ∫ dt
t , or 1

2 ln
∣∣z2 + 6z − 1

∣∣ = − ln |t| + C1, ln
∣∣z2 + 6z − 1

∣∣ =
−2 ln |t| + C2,

∣∣z2 + 6z − 1
∣∣ = C3

t2 , z2 + 6z − 1 = C4
t2 . Replacing z by x/t and simplifying,

we get x2 + 6xt − t2 = C. This equation describes a family of hyperbolas. Alternatively,
looking at this as a quadratic equation in x we can use the quadratic formula to find

that x = −6t±√
(6t)2−4(1)(−t2−C)

2 = −6t±√
40t2+4C
2 = −6t±2

√
10t2+C

2 = −3t ± √
10t2 + C.

Therefore, we have two one-parameter families of solutions: x(t) = −3t + √
10t2 + C

and x(t) = −3t − √
10t2 + C.

17. y′ = x
y + y

x . We have a choice here: Let z = x/y or z = y/x. Because it will make our

work a little easier, we choose z = y/x. Now dy
dx = z + x

(
dz
dx

)
allows us to write our

original equation as dy
dx = z + x

(
dz
dx

)
= 1

z + z, or x
(

dz
dx

)
= 1

z . Separating variables and

integrating, we find that z2

2 = ln |x| + C1. Substituting y/x for z and multiplying by 2,

we get
( y

x

)2 = 2 ln |x| + C2, y2 = 2x2 ln |x| + C2x2, so that we have two one-parameter
families of solutions: y = x

√
2 ln |x| + C and y = −x

√
2 ln |x| + C.

18. dy
dx = y2+2xy−x2

x2+2xy−y2 =
x2
(

y2

x2 + 2y
x −1

)
x2
(

1+ 2y
x − y2

x2

) =
(

y2

x2 + 2y
x −1

)
(

1+ 2y
x − y2

x2

) . If we let z = y/x, the equation becomes

z + x
(

dz
dx

)
= z2+2z−1

1+2z−z2 , or x
(

dz
dx

)
= z3−z2+z−1

1+2z−z2 . Separating variables and integrating, we get∫ 1+2z−z2

z3−z2+z−1 dz = ∫ 1
x dx,

∫ ( 1
z−1 − 2z

z2+1

)
dz = ∫ 1

x dx, ln |z − 1| − ln
∣∣z2 + 1

∣∣ = ln |x| + C1,

and ln
∣∣∣ z−1

z2+1

∣∣∣ = ln |x| + C1, so that z−1
z2+1 = Cx. Now replacing z by y/x, we get the result

that C
(
x2 + y2

) + x − y = 0. By using some algebra (completing squares, etc.), you can
see that this equation describes a family of circles passing through the origin whose
centers are on the line y = x. For each value of C, the radius of the circle is

√
2/2|C|.

Alternatively, you can view the equation C
(
x2 + y2

)+ x − y = 0 as a quadratic equation
in y and solve it, obtaining two one-parameter families of solutions.

B

1. The F TC says that d
dx f (x) = d

dx

∫ x
0 f (t)dt = f (x). Since f (0) = ∫ 0

0 f (t)dt = 0, we see that
we have the IVP y′ = y, y(0) = 0. Solving the equation by separating variables, we find
that y = Cex. The initial condition implies that C = 0, so that y = f (x) ≡ 0.

2. a. dx
dt = x2+x

t ⇒ dx
x(x+1)

= dt
t ⇒ ∫ (1

x − 1
x+1

)
dx = ∫ dt

t , so that we have ln |x|−ln |x+1| =
ln |t| + C1, or ln

∣∣∣ x
x+1

∣∣∣ = ln |t| + C1. Thus
∣∣∣ x

x+1

∣∣∣ = C2|t|, or x
x+1 = C3t. Solving this

last equation for x, we get x = Ct
1−Ct .
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b. First of all, we can’t find such a particular solution using the formula for the one-
parameter family of solutions found in (a): −1 = x(0) = C(0)/(1 − C(0)) implies
that −1 = 0. Basically, the right-hand side of the original differential equation is not
defined anywhere in the t-x plane where t = 0. However, the answer to (c) below
shows us how to deal with this problem.

c. In separating variables in (a), we divided by x+1, which vanishes when x = −1. This
means that we implicitly assumed that x was not equal to −1. Since x ≡ −1 is easily
seen to be a solution, we have x ≡ −1 as a singular solution—one that happens to
satisfy the initial condition x(0) = −1 specified in part (b).

3. a. dx
dt = x2 ⇒ x−2dx = dt ⇒ −x−1 = t + C1 ⇒ 1

x = −t + C2 ⇒ x(t) = 1
C−t . Now

x(1) = 1 ⇒ 1 = 1
C−1 ⇒ C = 2 ⇒ x(t) = 1

2−t .
b. The interval I can be as large as (−∞, 2) or (2, ∞). Any such interval I cannot include

the point t = 2, at which x(t) is not defined.
c.

d. Using the one-parameter formula found in (a), we want 0 = x(0) = 1
C−0 = 1

C , which
is impossible. However, we notice that x ≡ 0 is a singular solution that satisfies the
initial condition x(0) = 0.

4. a. dQ
dP = − cQ

1+cP ⇒ dQ
Q = − c

1+cP dP,
∫ dQ

Q = − ∫ c
1+cP dP, ln |Q| = − ln |1 + cP| + C1 ⇒

|Q| = eC1

|1+cP| ⇒ Q = K
1+cP , where K = ±eC1 .

b. If Q = K
1+cP , then Q(0) = K and Q(1) = K

1+c , so 2 ≈ Q(0)
Q(1)

= K
K

1+c
= 1 + c implies that

c ≈ 1.
c. Using the approximate value of c from part (b), we find that Q(0.20) = K

1+(1)(0.20)
=

K
1.2 = 5

6 K = 5
6 Q(0). This result tells us that the cost of national health insurance

when individuals pay 20% of their health services cost is five-sixths the cost when
individuals pay nothing “out of pocket.”

5. dy
dt = − ln 2

30 (y − 20) ⇒ dy
y−20 = − ln 2

30 dt ⇒ ln |y − 20| = − ln 2
30 t + C1 ⇒ |y − 20| =

C2e− ln 2
30 t = C2

(
eln 2−1/30

)t = C2
(
2−t/30

) ⇒ y − 20 = C3
(
2−t/30

)
. Now y(30) = 60 ⇒

60 − 20 = C3
(
2−30/30

) = C3/2, 40 = C3/2 ⇒ C3 = 80. Therefore, y = 80
(
2−t/30

)+ 20.
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Now 40 = 80
(
2−t/30

) + 20 ⇒ 20 = 80
(
2−t/30

) ⇒ 1
4 = 2−t/30 ⇒ ln

(1
4

) = − t
30 ln 2 ⇒

t = −30
ln
( 1

4

)
ln 2 = −30(−2) = 60.

6. a. Separating variables, we have dH
H = − 1

EBV dVL, implying ln |H| = − 1
EBV VL + K , or

H = Ce− VL
EBV .

b. Given EBV = 5 and H(0) = 0.40, we can write the solution given in part (a) as

H = 0.4e− VL
5 . Thus the patient’s volume of red blood cells at the end of the operation

is given by 5H = 2e− VL
5 . For example, if the patient loses 2.5 liters of blood during

surgery (VL = 2.5), then the patient’s volume of red blood cells at the end of the
operation is 2e−0.5 = 1.213 liters.

7. dV
dh = 16

√
4 − (h − 2)2 ⇒ ∫

dV = ∫
16

√
4 − (h − 2)2dh = 16

∫ √
4 − (h − 2)2dh. Now

let h − 2 = 2 sin θ, so that dh = 2 cos θ dθ. Then we have V = 16
∫ √

4 − 4 sin2 θ ·
2 cos θ dθ = 16

∫
2 cos θ · 2 cos θ dθ = 64

∫
cos2 θ dθ = 64

(1
2θ + 1

4 sin 2θ
) + C = 32θ +

16 sin 2θ + C. Instead of converting back to the variable h, just notice that h = 0 corre-
sponds to sin θ = −1, or θ = −π/2, and h = 4 corresponds to sin θ = 1, or θ = π/2. Now
use the initial condition to find C: 0 = V(0) = 32(−π/2)+ 16 sin(−π)+ C, or C = 16π.
Therefore V = 32θ +16 sin 2θ +16π and V(4) = 32(π/2)+16 sin π +16π = 32π units.

8. Separating variables and integrating, we get
∫ dm√

1+m2 = ∫
dx = x +C. You can attempt to

evaluate the first integral by starting with the substitution m = tan u, so that
√

1 + m2 =
sec u and dm = sec2 u du—or you can consult a table of integrals to find that

∫ dm√
1+m2 =

ln
(
m + √

1 + m2
)

+ K . (We don’t need an absolute value inside the logarithm because√
1 + m2 >

√
m2 = |m|, so that m + √

1 + m2 > 0.) Now we have the equation

ln
(
m + √

1 + m2
)

= x + C. Using the given initial condition m(0) = 0, we find that

ln
(

0 + √
1 + 02

)
= 0 + C, so that C = 0. Now ln

(
m + √

1 + m2
)

= x ⇒ m +√
1 + m2 = ex. Replacing x by −x, we see that −m +√

1 + m2 = e−x, so that subtracting
the second formula from the first gives us 2m = ex − e−x, or m = (

ex − e−x
)
/2 = sinh(x),

the hyperbolic sine of x.

9. a. We have x(t) = αβ
(

1−e(α−β)kt
)

β−αe(α−β)kt = e(α−β)kt
(

αβ

e(α−β)kt −αβ
)

e(α−β)kt
(

β

e(α−β)kt −α
) =

(
αβ

e(α−β)kt −αβ
)

(
β

e(α−β)kt −α
) → 0−αβ

0−α
= β. (If

α > β, then α − β > 0 and 1/e(α−β)kt → 0 as t → ∞.)

b. If α < β, then α−β < 0 and e(α−β)kt → 0 as t → ∞. Therefore, x(t) = αβ
(

1−e(α−β)kt
)

β−αe(α−β)kt →
αβ(1−0)
β−α·0 = αβ

β
= α as t → ∞.

10. Separating variables and integrating, we get
∫ dQ

Q(Q2+2)
= ∫ dt

t(t+3)
, or

1
2

∫ ( 1
Q − Q

Q2+2

)
dQ = 1

3

∫ (1
t − 1

t+3

)
dt, so that 1

2

(
ln |Q| − 1

2 ln
∣∣Q2 + 2

∣∣) =
1
3

(
ln |t| − ln |t + 3|) + C1. Multiplying by 4 and simplifying, we get ln

∣∣∣ Q2

Q2+2

∣∣∣ =
4
3 ln

∣∣∣ t
t+3

∣∣∣ + C2, leading to Q2

Q2+2 = C
(

t
t+3

) 4
3
. Now the initial condition Q(1) = 1
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gives us 1
1+2 = C

(
1

1+3

) 4
3
, or C = 4

4
3 /3. Therefore Q2

Q2+2 = 4
4
3

3

(
t

t+3

) 4
3 = 1

3

(
4t

t+3

) 4
3

and we can solve for Q as an explicit function of t: Q(t) =

√√√√√ 2
(

4t
t+3

) 4
3

3−
(

4t
t+3

) 4
3

=
√

2

3
( t+3

4t

) 4
3 −1

,

where we have chosen the positive square root to be consistent with the initial
condition.

C

1. Let v = v(t) denote the velocity of the bullet at time t. Let V be the velocity of the bullet at
impact, D the final depth of penetration into the bale, and T the time required for achieving
D. We have dv

dt = −k
√

v, where k is a positive constant of proportionality (the “coefficient of

friction”). We solve this separable equation to find that v = (C−kt)2

4 , where C is an arbitrary
constant. Assuming that v(0) = V and v(T) = 0 (boundary conditions), we can determine
the constants k and C: k = 2

√
V/T and C = 2

√
V . Therefore, v = (

V/T2
)
(T − t)2. If we

let x denote the distance traveled by the bullet in the bale of cotton, then v = dx
dt and we

can integrate to get x = ∫ dx
dt dt = ∫

v(t)dt = ∫ (
V/T2

)
(T − t)2dt = (

V/T2
)∫

(T − t)2dt =
−(

V/3T2
)
(T − t)3 + C∗. Because x = 0 when t = 0, we find that C∗ = VT/3. Also notice

that, because x(T) = D, we have C∗ = D(= VT/3). In our problem, T = 0.1 and D = 10.
Therefore, V = 3D/T = 300 ft./sec.

2. dL
dt = aLn

b+Ln ⇒ ∫ ( b+Ln

aLn

)
dL = ∫

dt ⇒ ∫ ( b
a L−n + 1

a

)
dL = ∫

dt ⇒ b
a

(
L−n+1

−n+1

)
+ L

a = t + C.

Since we can assume that L = 0 when t = 0, we see that C = 0. Therefore, we can write
t = 1

a

(
L + bL1−n

1−n

)
.

3. a. If we let p(x) = dy/dx, then dp/dx = d2y/dx2 and the original equation becomes
dp
dx = k

[
1 + p2

] 1
2 .

b. Then dp√
1+p2

= k dx,
∫ dp√

1+p2
= kx + C1, ln

(
p + √

1 + p2
)

= kx + C1, p + √
1 + p2 =

C2ekx. Isolating the radical, squaring both sides, and solving for p, we find that p =
dy
dx = C2

2 ekx − 1
2C2

e−kx.

Integrating with respect to x, we get y = C2
2k ekx+ 1

2kC2
e−kx+C3 = 1

2k

(
C2ekx + 1

C2
e−kx

)
+

C3. Note that since the original equation is of second-order, we get two arbitrary
constants in our solution. Also, if we had initial conditions or boundary conditions
that would allow us to conclude that C2 = 1/C2 = 1 and C3 = 0, the resulting solution
curve would be given by y = 1

k cosh(kx), a hyperbolic cosine whose graph is called a
catenary.

4. a. This is a separable equation: dC
dt = −C

6 ⇒ ∫ dC
C = −1

6

∫
dt ⇒ ln |C| = − t

6 + K1 ⇒
|C| = K2e

−t
6 ⇒ C = Ke

−t
6 . Since we are told that C = 14 mg/liter at t = 0, we
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can deduce that K = 14, so that the concentration at time t can be expressed as
C = C(t) = 14e

−t
6 .

b. The concentration becomes ineffective when C < 5—that is, when 14e
−t
6 < 5. Now

14e
−t
6 < 5 ⇒ e

−t
6 < 5/14 ⇒ −t/6 < ln(5/14) ⇒ t > −6 ln(5/14) ≈ 6.18 hours.

Therefore a second injection should be given after about 6 hours.

c. Mathematically, the fact that a second injection increases the concentration by 14
mg/liter means that we have a new initial condition: C(6) = 14e−6/6 + 14 =
14e−1 + 14 = the concentration 6 hours after the first injection + the increase due to
the second injection. This says that the concentration t hours after the second injection
can be expressed as C = (14e−1 + 14)e

−t
6 . Now the concentration becomes ineffec-

tive when
(
14e−1 + 14

)
e

−t
6 < 5, which implies that t > −6 ln

(
5/
(
14e−1 + 14

)) ≈
8.06 hours. So another injection is necessary about 8 hours after the second
injection.

d. Undesirable side effects occur when the concentration exceeds 20 mg/liter. This trans-
lates into 14e

−t
6 + 14 > 20 for the second injection. Solving the inequality gives us

t < −6 ln(3/7) ≈ 5.08 hours, which means that we should wait at least 5 hours
before giving the second injection. The results of (b) and (d) say that there is an opti-
mal “window” between 5 and 6 hours during which the first injection is still effective
but a second injection won’t be harmful.

e.

5. a. The equilibrium solution occurs when −μC + D = 0—that is, when C = D
μ

.

b. Separating variables, we find that
∫ dC

−μC+D = ∫
dt, which implies that − 1

μ
ln |D −

μC| = t + K1, ln |D − μC| = −μt + K2, |D − μC| = K3e−μt , D − μC = Ke−μt , so

that C = D
μ

−
(

K
μ

)
e−μt . The initial condition C = C0 when t = 0 gives us C0 =

C(0) = D
μ

−
(

K
μ

)
e0 = D−K

μ
, allowing us to conclude that K = D − μC0. The final

formula for the concentration is C = D
μ

−
(

D−μC0
μ

)
e−μt . As t → ∞, e−μt → 0, so that

C(t) → D
μ

− 0 = D
μ

, the equilibrium solution found in part (a).
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c.

6. a. After separating variables, we have
∫ dP

P(1−P)
= ∫

dt ⇒ ∫ ( 1
1−P + 1

P

)
dP = ∫

dt ⇒
−ln|1 − P| + ln|P| = t + C1 ⇒ ln

∣∣∣ P
1−P

∣∣∣ = t + C1 ⇒
∣∣∣ P

1−P

∣∣∣ = C2et ⇒ P
1−P = Cet ⇒

P = Cet

1+Cet . You should note that P ≡ 0 and P ≡ 1 are equilibrium solutions (see part (a)
of Exercise C5), with P ≡ 1 a singular solution.

b. P0 = P(0) = C/(1 + C) (from (a)) ⇒ C = P0/(1 − P0) ⇒ P(t) =
(

P0
1−P0

)
et

1+
(

P0
1−P0

)
et

=
P0et

(1−P0)+P0et = etP0

et
(
P0+ 1−P0

et

) = P0(
P0+ 1−P0

et

) → P0
(P0+0)

= 1 as t → ∞.

c. From the last expression in part (b), it is clear that P(t) → 1 as t → ∞, whether P0 is
between 0 and 1 or is greater than 1. The only difference between the two cases is that
when 0 < P0 < 1, P(t) → 1 from below as t → ∞; while for P0 > 1, P(t) → 1 from
above as t → ∞. The equilibrium solution P ≡ 1 is a sink.

2.2 LINEAR EQUATIONS
According to Ince [Ordinary Differential Equations (Dover, 1956)], investigations of linear
equations were underway before 1700. Ince attributes the development of the concept of the
integrating factor to Euler, even though the method had been applied by others earlier. The
general treatment of homogeneous linear equations with constant coefficients was begun
(according to Ince) with a 1739 letter from Euler to John Bernoulli.

Usually I treat the concept of linearity and the Superposition Principle lightly the first time
around, making connections with the familiar processes (transformations) of differentiation
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and integration. The Superposition Principle will be discussed further in Chapters 4
and 5.

The ideas presented in Exercise C3 are important. Alternatively, we can use the fact (already
stated in the text) that a first-order homogeneous linear equation is separable. After finding the
general solution y(x) of the homogeneous equation, suggest that a nonzero forcing term Q(x)
may be “reached” by considering a solution of the form y∗ = u(x) · y(x). Having the student
substitute this function in the nonhomogeneous equation and determine the function u(x)
is a good way to prepare him or her for the method of variation of parameters presented in
Section 4.4.

∗The hint given for Exercise B6 should be deleted.

A

1. y′ + 2y = 4x ⇒ integrating factor μ(x) = e
∫

2dx = e2x. Then e2x(y′ + 2y) = e2x · 4x ⇒
e2xy′+2e2xy = e2x4x ⇒ d

dx

[
e2xy

] = 4xe2x ⇒ e2xy = (2x −1)e2x+C ⇒ y = 2x−1+Ce−2x.
Note that the solution curves are asymptotic to the line y = 2x − 1 as t tends to infinity.

2. y′ + 2xy = xe−x2 ⇒ μ(x) = e
∫

2x dx = ex2
. Multiplying each side of the original equation

by μ(x), we get d
dx

[
ex2

y
]

= x, which implies that ex2
y = x2

2 + C, or y = x2e−x2

2 + Ce−x2 =(
x2

2 + C
)
e−x2

.

3. ẋ + 2tx = t3 ⇒ μ(t) = e
∫

2t dt = et2 ⇒ d
dt

[
et2

x
]

= t3et2 ⇒ et2
x = ∫

t3et2
dt =(

t2 − 1
) et2

2 + C ⇒ x = t2

2 − 1
2 + Ce−t2

.

4. y′+y = cos x ⇒ μ(x) = e
∫

1dx = ex ⇒ d
dx [exy] = ex cos x ⇒ exy = ex

2 (sin x+cos x)+C ⇒
y = 1

2 (sin x + cos x) + Ce−x.

5. ty′ = −3y + t3 − t2 ⇒ ty′ + 3y = t3 − t2 ⇒ y′ + (3
t

)
y = t2 − t ⇒ μ(t) = e

∫ 3
t dt = e3 ln t =

t3 ⇒ d
dt

[
t3y

] = t5 − t4 ⇒ t3y = t6

6 − t5

5 + C ⇒ y = t3

6 − t2

5 + C
t3 .

6. dx
ds = x

s − s2 ⇒ dx
ds + (−1

s

)
x = −s2 ⇒ μ(s) = e

∫ − 1
s ds = 1/s ⇒ d

ds

[ x
s

] = −s ⇒ x
s =

− ∫
s ds = −s2/2 + C ⇒ x = −s3/2 + Cs.

7. y = x
(
y′ − xcos x

) = xy′ − x2cos x ⇒ xy′ − y = x2cos x ⇒ y′ + (−1
x

)
y = x cos x ⇒ μ(x) =

e
∫ − 1

x dx = e− ln x = 1/x ⇒ d
dx

[ y
x

] = cos x ⇒ y
x = ∫

cos x dx = sin x+C ⇒ y = x sin x+Cx.

8.
(
1 + x2

)
y′ − 2xy = (

1 + x2
)2 ⇒ y′ +

( −2x
1+x2

)
y = 1 + x2 ⇒ μ(x) = e

∫ −
(

2x
1+x2

)
dx =

e− ln
(
1+x2) = 1/

(
1 + x2

) ⇒ d
dx

[
y

1+x2

]
= 1 ⇒ y

1+x2 = x + C ⇒ y = (x + C)
(
1 + x2

)
.

9. t(x′ − x) = (
1 + t2

)
et ⇒ x′ − x =

(
1+t2

t

)
et ⇒ μ(t) = e

∫ −1dt = e−t ⇒ d
dt

[
e−tx

] =(
1+t2

t

)
= 1

t + t ⇒ e−tx = ∫ (1
t + t

)
dt = ln |t| + t2/2 + C ⇒ x = et

(
ln |t| + t2/2 + C

)
.

10. Q′ − (tan t)Q = sec t ⇒ μ(t) = e
∫ − tan t dt = eln(cos t) = cos t ⇒ d

dt [Q cos t] = 1 ⇒
Q cos t = t +C ⇒ Q = t+C

cos t . The condition Q(0) = 0 implies that 0 = 0+C
cos(0)

= C/1 = C,
so that our final answer is Q(t) = t

cos t = t sec t.
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11. xy′ + y − ex = 0 ⇒ xy′ + y = ex ⇒ y′ + (1
x

)
y = ex

x ⇒ μ(x) = e
∫ 1

x dx = x ⇒ d
dx [xy] =

ex ⇒ xy = ∫
exdx = ex + C ⇒ y = ex+C

x . The initial condition y(a) = b implies that
b = ea+C

a , so that C = ab − ea and we have y(x) = ex+ab−ea

x . (In the initial condition,
clearly a shouldn’t be 0.)

12. (xy′ − 1) ln x = 2y ⇒ (x ln x)y′ − 2y = ln x ⇒ y′ + ( −2
x ln x

)
y = 1

x ⇒ μ(x) =
e
∫ −2

x ln x dx = e−2
∫ 1

x
ln x dx = e−2 ln(| ln x|) = 1

ln2 x
⇒ d

dx

[
y

ln2 x

]
= 1

x ln2 x
⇒ y

ln2 x
= ∫ 1

x ln2 x
dx =

[letting u = ln x, du = (1/x)dx] − 1
ln x + C ⇒ y = C ln2 x − ln x.

13. y′ + ay = emx ⇒ μ(x) = e
∫

adx = eax ⇒ d
dx [eaxy] = eaxemx = e(a+m)xeaxy = ∫

e(a+m)xdx =
e(a+m)x

a+m + C, if a + m �= 0—that is, if m �= −a. For m �= −a, we have y = emx

a+m + Ce−ax. If
m = −a, then eaxy = ∫

e(a−a)xdx = ∫
1dx = x+C, so that y = xe−ax+Ce−ax = (x+C)e−ax.

[Note: A CAS that can solve ODEs may miss the need for an analysis of two cases.]

14. y′ +
(

1−2x
x2

)
y = 1 ⇒ μ(x) = e

∫( 1−2x
x2

)
dx = e

∫(
x−2− 2

x

)
dx = e−x−1−2 ln |x| = 1

x2 e−1/x ⇒
d
dx

[
1
x2 e−1/xy

]
= 1

x2 e−1/x ⇒ 1
x2 e−1/xy = ∫ 1

x2 e−1/xdx = [letting u = −1/x, etc.] = e−1/x +
C ⇒ y = x2 + Cx2e1/x.

15. tx′ −
(

x
t+1

)
= t ⇒ x′ +

( −1
t(t+1)

)
x = 1 ⇒ μ(t) = e

∫ −1
t(t+1)

dt = e
∫( 1

t+1 − 1
t

)
dt = eln |t+1|−ln |t| =

eln
∣∣ t+1

t

∣∣ = t+1
t ⇒ d

dt

[ t+1
t x

] = t+1
t ⇒ t+1

t x = ∫ t+1
t dt = t + ln |t| + C ⇒ x =

(
t

t+1

)
·(

t + ln |t| + C
)
. Now x(1) = 0 implies that 0 =

(
1

1+1

)(
1 + ln 1 + C

)
, so that C = −1

and x(t) =
(

t
t+1

)(
t + ln |t| − 1

)
.

16. The equation y = (
2x + y3

)
y′ is nonlinear in y. But if we think of y as the indepen-

dent variable and x as the dependent variable, we can write y = (
2x + y3

) dy
dx , ydx =(

2x + y3
)
dy, y dx

dy = 2x + y3, y dx
dy − 2x = y3, dx

dy +
(−2

y

)
x = y2, which is a linear equation

in x. Then μ(y) = e
∫ − 2

y dy = 1
y2 ⇒ d

dy

[
x
y2

]
= 1 ⇒ x

y2 = ∫
1dy = y + C ⇒ x = y3 + Cy2.

17. x
(
ey − y′) = 2: Unlike the situation in Exercise 16, just switching the roles of y and x

doesn’t work. The resulting equation would not be linear in either x or y. Noticing that(
e−y

)′ = −y′e−y , we can multiply each side of the differential equation by e−y to get

x
(
1 − e−yy′) = 2e−y . Making the substitution z = e−y gives us x

(
1 + dz

dx

)
= 2z, x + x dz

dx =
2z, x dz

dx − 2z = −x, and dz
dx + (−2

x

)
z = −1, a linear equation in z. An integrating factor is

e
∫ − 2

x dx = 1
x2 . Therefore we have d

dx

[
z
x2

]
= − 1

x2 ⇒ z
x2 = ∫ − 1

x2 dx = 1
x +C ⇒ z = x+Cx2,

or e−y = x + Cx2 ⇒ y = − ln
(
x + Cx2

)
.

18. y(x) = ∫ x
0 y(t)dt + x + 1 ⇒ dy

dx = y(x) + 1 ⇒ dy
dx − y = 1 ⇒ μ(x) = e

∫ −1dx = e−x ⇒
d
dx

[
e−xy

] = e−x ⇒ e−xy = ∫
e−xdx = −e−x + C ⇒ y = Cex − 1. But there is an implied

initial condition here: y(0) = 1. (See formula (1.2.1) in Chapter 1.) Therefore, 1 = y(0) =
Ce0 − 1 ⇒ C = 2, so that the solution is y = 2ex − 1. [Try any other value of C and see
that the function doesn’t satisfy the original equation.]
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B

1. y′ = 4
t y − 6ty2, or y′ + (−4

t

)
y = −6ty2: Here n = 2. Divide both sides by y2 to get

y−2y′ + (−4
t

)
y−1 = −6t. Letting z = y1−2 = y−1, we have dz

dt = −y−2 · dy
dt , so that the

equation becomes − dz
dt +

(−4
t

)
z = −6t, or dz

dt +
(4

t

)
z = 6t, linear in z. Now μ(t) = e

∫ 4
t dt =

t4, so that we have d
dt

[
t4z

] = 6t5, t4z = ∫
6t5dt = t6 + C, z = t6+C

t4 , y = 1
z = t4

t6+C . Note
that y ≡ 0 is a singular solution.

2. ẋ = 1
t x + √

x, or dx
dt + (−1

t

)
x = x

1
2 . Let z = x1− 1

2 = x
1
2 . Then dz

dt = 1
2 x− 1

2 dx
dt by the Chain

Rule. Dividing by x
1
2 , we get 2 dz

dt +(−1
t

)
z = 1, or dz

dt +(− 1
2t

)
z = 1

2 . Now μ(t) = e
∫ − 1

2t dt =
1

t−
1
2

, so that we have d
dt

[
z√
t

]
= 1

2
√

t
= 1

2 t− 1
2 and z√

t
= ∫ 1

2 t− 1
2 dt = t

1
2 + C. Therefore, z =

t+C
√

t and, replacing z by x
1
2 , we get x

1
2 = t+C

√
t, or x = (

t + C
√

t
)2 = t2+2Ct

3
2 +C2t.

Since we divided by x
1
2 , we check and see that x ≡ 0 is a singular solution.

3. dy
dx + y = xy3: Here n = 3, so that we let z = y1−3 = y−2 and dz

dx = −2y−3 dy
dx . Dividing

both sides of the original equation by y3, we get y−3 dy
dx + y−2 = x, or −1

2
dz
dx + z =

x, dz
dx − 2z = −2x, so that μ(x) = e

∫ −2dx = e−2x. Then d
dx

[
e−2xz

] = −2xe−2x, or e−2xz =∫ −2xe−2xdx = 1
2 e−2x(2x + 1) + C, so that z = 1

2 (2x + 1) + Ce2x = x + 1
2 + Ce2x and

1
y2 = x + 1

2 + Ce2x, or y = ±1√
x+ 1

2 +Ce2x
. Note that y ≡ 0 is a singular solution.

4. y′ + xy = √
y: Here n = 1/2. Let z = y1− 1

2 = y
1
2 , so that dz

dx = 1
2 y− 1

2
dy
dx . Now divide

both sides of the original equation by
√

y : y− 1
2

dy
dx + xy

1
2 = 1, or 2 dz

dx + xz = 1, and

dz
dx +( x

2

)
z = 1

2 . Now μ(x) = e
∫ x

2 dx = e
x2
4 ⇒ d

dx

[
e

x2
4 z

]
= 1

2 e
x2
4 ⇒ e

x2
4 z = ∫ 1

2 e
x2
4 dx+C ⇒

z = 1
2 e− x2

4
∫

e
x2
4 dx + Ce− x2

4 . Replacing z by
√

y, we get
√

y = 1
2 e− x2

4
∫

e
x2
4 dx + Ce− x2

4 , or

y = 1
4 e− x2

2

(∫
e

x2
4 dx + 2C

)2

.

5. y′ = 2ty + ty2: Here n = 2. Let z = y1−2 = y−1, so that z′ = −y−2y′. The original

equation becomes z′ + 2tz = −t. Now μ(t) = e
∫

2t dt = et2 ⇒
[
et2

z
]′ = −tet2 ⇒ et2

z =∫ −tet2
dt + C ⇒ z = e−t2 ∫ −tet2

dx + Ce−t2 = −1
2 + Ce−t2

. Replacing z by y−1, we get

y−1 = −1
2 + Ce−t2

, y = 1
− 1

2 +Ce−t2
= 2

−1+2Ce−t2
= 2et2

2C−et2
.

6. y′ = x3y2+xy: We can write this as y′−xy = x3y2. Now divide by y2 to get y−2y′−xy−1 = x3.
Let z = y−1. Then z′ = −y−2y′ and the equation becomes −z′ −xz = x3, or z′ +xz = −x3.

Now μ(x) = e
∫

x dx = e
x2
2 and

[
e

x2
2 z

]′
= −x3e

x2
2 .

Thus e
x2
2 z = ∫ −x3e

x2
2 dx = (

2 − x2
)
e

x2
2 + C, so z = 2 − x2 + Ce

−x2
2 . Replacing z by y−1,

we get y−1 = 2 − x2 + Ce
−x2

2 , or y = 1

Ce
−x2

2 −x2+2
= e

x2
2

(2−x2)e
x2
2 +C

.

7. a. dW
dt = αW

2
3 − βW , dW

dt + βW = αW
2
3 : Here n = 2/3. Letting z = W1− 2

3 = W
1
3

and dividing both sides of the ODE by W
2
3 gives us the new equation W− 2

3 dW
dt +
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βW
1
3 = α. Noting that dz

dt = 1
3 W− 2

3 · dW
dt , we can write this last equation as 3 dz

dt +
βz = α, or dz

dt +
(

β
3

)
z = α

3 , so that μ(t) = e
∫ β

3 dt = e
βt
3 . Now d

dt

[
e

βt
3 z
]

= α
3 e

βt
3 ⇒

e
βt
3 z = ∫

α
3 e

βt
3 dt = α

β
e

βt
3 + C ⇒ z = α

β
+ Ce− βt

3 . Replacing z by W
1
3 , we find that

W
1
3 = α

β
+ Ce− βt

3 , or W(t) =
(

α
β

+ Ce− βt
3

)3
.

b. W∞ = lim
t→∞ W(t) = lim

t→∞
(

α
β

+ Ce− βt
3

)3 =
(

α
β

+ C · lim
t→∞ e− βt

3

)3 =
(

α
β

)3
.

c. W(0) = 0 ⇒ 0 = W(0) =
(

α
β

+ Ce0
)3 =

(
α
β

+ C
)3 ⇒ C = −α

β
. Therefore W(t) =(

α
β

− α
β

e− βt
3

)3 =
(

α
β

)3(
1 − e− βt

3

)3 = W∞
(

1 − e− βt
3

)3
.

d.

t

W�

8. Suppose we have the homogeneous linear equation a1(x) dy
dx + a0(x)y = 0. Dividing by

a1(x), we get dy
dx + a0(x)

a1(x)y = 0, dy
dx = − a0(x)

a1(x)y, dy
y = −

(
a0(x)
a1(x)

)
dx, so that the equation is

separable.

9. a. L dI
dt + RI = E ⇒ dI

dt + (R
L

)
I = E

L ⇒ μ(t) = e
∫ R

L dt = e

(
R
L

)
t ⇒ d

dt

[
e

(
R
L

)
t
I
]

= E
L e

(
R
L

)
t ⇒

e

(
R
L

)
t
I = ∫ E

L e

(
R
L

)
t
dt = E

Re

(
R
L

)
t + C ⇒ I = E

R + Ce
−
(

R
L

)
t
. Now the wording of the

problem suggests that I(0) = 0, so that 0 = I(0) = E
R + Ce0 ⇒ C = − E

R . Therefore,

I(t) = E
R − E

Re
−
(

R
L

)
t = E

R

(
1 − e

−
(

R
L

)
t
)

.

b. lim
t→∞ I(t) = lim

t→∞
E
R

(
1 − e

−
(

R
L

)
t
)

= E
R

(
1 − lim

t→∞ e
−
(

R
L

)
t
)

= E
R .

c. By “final” value, we mean the value E/R found in (b). Now we want I = 1
2

E
R , or 1

2
E
R =

E
R

(
1 − e

−
(

R
L

)
t
)

, so that 1
2 = 1 − e

−
(

R
L

)
t
, e

−
(

R
L

)
t = 1

2 , −R
L t = ln

(1
2

) = − ln 2, R
L t =

ln 2, and t = L
R ln 2.

d. Using the general solution found in part (a), we see that I(0) = E
R ⇒ E

R =
E
R

(
1 − Ce0

) = E
R + C∗, implying that C∗ = 0. Therefore I(t) ≡ E

R , which we realize
is the equilibrium solution (see Exercise C5(a) in Exercises 2.1) of the autonomous
equation.
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10. a. RdQ
dt + Q

C = E ⇒ dQ
dt + ( 1

RC

)
Q = E ⇒ μ(t) = e

∫ 1
RC dt = e

t
RC ⇒ d

dt

[
e

t
RC Q

]
= Ee

t
RC ⇒

e
t

RC Q = ∫
Ee

t
RC dt = ERCe

t
RC + K ⇒ Q = e− t

RC

(
ERCe

t
RC + K

)
= ERC + Ke− t

RC . Then

0 = Q(0) = ERC + Ke0 = ERC + K ⇒ K = −ERC ⇒ Q(t) = ERC
(

1 − e− t
RC

)
.

b. The “final” value is calculated as lim
t→∞ Q(t) = ERC. We want ERC/2 = ERC

(
1 − e−t/RC

)
,

which implies e−t/RC = 1/2, −t/RC = ln(1/2), and t = RC ln 2 ≈ 0.693RC.
11. The equation is RdQ

dt + Q
C = E0 sin(ωt), with Q(0) = 0. Then dQ

dt + ( 1
RC

)
Q = E0

R sin(ωt) ⇒
μ(t) = e

∫ 1
RC dt = e

t
RC ⇒ d

dt

[
e

t
RC Q

]
= E0

R e
t

RC sin(ωt) ⇒ e
t

RC Q = E0
R

∫
e

t
RC sin(ωt)dt =

E0
R

{
RCe

t
RC [sin(ωt)−ωRC cos(ωt)]

1+(RCω)2

}
+ K , so that Q(t) =

{
E0C[sin(ωt)−ωRC cos(ωt)]

1+(RCω)2

}
+ Ke− t

RC . Now

0 = Q(0) = E0C[0−ωRC]
1+(RCω)2 + K = − ωE0RC2

1+(RCω)2 + K , so that K = ωE0RC2

1+(RCω)2 and Q(t) =
E0C[sin(ωt)−ωRC cos(ωt)]

1+(RCω)2 + ωE0RC2

1+(RCω)2 e− t
RC = E0C

1+(RCω)2

{
sin(ωt) − ωRC cos(ωt) + ωRCe− t

RC

}
.

12. a. For 0 < t < T , the equation is dS
dt +

(
rĀ
M + λ

)
S = rĀ. Let b = rĀ

M + λ. Then μ(t) =
e
∫

b dt = ebt and we have d
dt

[
ebtS

] = ebtrĀ ⇒ ebtS = rĀ
∫

ebt dt = rĀ
b ebt + C ⇒

S(t) = rĀ
b + Ce−bt for 0 < t < T . Letting S0 = S(0), we get S0 = rĀ

b + C, so that

C = S0 − rĀ
b and S(t) = rĀ

b +
(
S0 − rĀ

b

)
e−bt (∗) for 0 < t < T . Now for t > T , A = 0

and the equation becomes dS
dt + λS = 0, or dS

dt = −λS, which is separable and
has solution S = ke−λt . At t = T , let S = ST , so that ST = ke−λt (∗∗). Hence for
t ≥ T , S(t) = STe−λ(t−T). From (∗) we see that ST has the value rĀ

b +
(
S0 − rĀ

b

)
e−bT .

Combining (∗) and (∗∗) and substituting for b, we get the formula for predicted sales:

S(t) =

⎧⎪⎨
⎪⎩

rĀ(
rĀ
M +λ

) +
(

S0 − rĀ(
rĀ
M +λ

)
)

e
−
(

rĀ
M +λ

)
t

for 0 < t < T

STe−λ(t−T) for t ≥ T

.

b. Choosing Ā = 1000, r = 10, λ = 0.1, S0 = 20000, ST = 36000, M = 60000, and
T = 10, we have the following graph:

13. a. dp
dt = ν−(μ+ν)p, or dp

dt +(μ+ν)p = ν: Here the integrating factor is e
∫
(μ+ν)dt = e(μ+ν)t ,

so that d
dt

[
e(μ+ν)tp

] = νe(μ+ν)t , e(μ+ν)tp = ∫
νe(μ+ν)tdt, e(μ+ν)tp = ν

μ+ν
e(μ+ν)t+C, and

p(t) = ν
μ+ν

+ Ce−(μ+ν)t . Letting p0 = p(0), we get p0 = ν
μ+ν

+ C · e0, implying that
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C = p0 − ν
μ+ν

. Therefore p(t) = ν
μ+ν

+
(
p0 − ν

μ+ν

)
e−(μ+v)t = ν

μ+ν

[
1 − e−(μ+v)t

] +
p0e−(μ+v)t . Note that p(t) ≡ ν

μ+v is an equilibrium solution: If p0 = ν
μ+v , then

p(t) stays at this value forever. Since q(t) = 1 − p(t) and q0 = 1 − p0, we have

q(t) = 1 −
{

ν
μ+ν

[
1 − e−(μ+v)t

] + p0e−(μ+v)t
}

= μ
μ+ν

+
(
q0 − μ

μ+ν

)
e−(μ+v)t =

μ
μ+v

[
1 − e−(μ+v)t

] + q0e−(μ+v)t .

b. Since e−(μ+v)t → 0 as t → ∞, clearly p(t) → ν/(μ+ν) and q(t) → μ/(μ+ν). Notice
that both these equilibrium gene frequencies are equilibrium solutions (sinks) for
the autonomous differential equation.

14. a. dV
dt + K(t) = r(t)V ⇒ dV

dt − r(t)V = −K(t). Ordinarily we would write the inte-

grating factor as μ(t) = e− ∫
r(t)dt , but note that μ(t) = e− ∫ t

T r(x)dx = e
∫ T

t r(x)dx is an

integrating factor since d
dt μ(t) = −r(t)e− ∫ t

T r(x)dx = −r(t)μ(t). Then d
dt

[
e
∫ T

t r(x)dxV
]

=
−e

∫ T
t r(x)dxK(t) ⇒ e

∫ T
t r(x)dxV = − ∫ t

T K(u)e
∫ T

u r(x)dxdu+C = ∫ T
t K(u)e

∫ T
u r(x)dxdu+C ⇒

V = e− ∫ T
t r(x)dx · ∫ T

t K(u)e
∫ T

u r(x)dxdu + Ce− ∫ T
t r(x)dx. Letting t = T , the initial con-

dition V(T) = Z implies that Z = e0 · 0 + Ce0, or C = Z. Therefore V(t) =
e− ∫ T

t r(x)dx · ∫ T
t K(u)e

∫ T
u r(x)dxdu + Ze− ∫ T

t r(x)dx = e− ∫ T
t r(x)dx

(
Z + ∫ T

t K(u)e
∫ T

u r(x)dxdu
)

.

b. If K(t) ≡ 0, then V(t) = Ze− ∫ T
t r(x)dx.

C

1. y′ + a(x)y = b(x)yn: Let y = u1/(1−n), n �= 0, 1. Then y′ = 1
1−nu

1
1−n −1u′ = un/(1−n)

1−n u′.
Substituting, we get un/(1−n)

1−n u′ + a(x)u1/(1−n) = b(x)un/(1−n). Now divide both sides by
un/(1−n)

1−n to get u′ + (1 − n)a(x)u(x) = (1 − n)b(x), a linear equation.

2. This is a Bernoulli equation. If we divide both sides by I2, we get I−2 dI
dt − k(P0 +

rt)I−1 = −k. Letting z = I−1, we have dz
dt = −I−2 dI

dt , so our original equa-
tion becomes − dz

dt − k(P0 + rt)z = −k, or dz
dt k(P0 + rt)z = k, a linear equation.

Then μ(t) = e
∫

k(P0+rt)dt = ekP0t+(1/2)krt2
and d

dt

[
e
∫

k(P0+rt)dtz
]

= kekP0t+(1/2)krt2
,

ekP0t+(1/2)krt2
z = k

∫
ekP0t+(1/2)krt2

dt + C = k
∫ t

0 ekP0u+(1/2)kru2
du + C, and z =

e−[kP0t+(1/2)krt2]
(
k
∫ t

0 ekP0u+(1/2)kru2
du + C

)
. Now z(0) = I(0)−1 = 1/I0 = e0(0 + C), so

C = 1/I0 and z = e−[kP0t+(1/2)krt2]
(

1
I0

+ k
∫ t

0 ekP0u+(1/2)kru2
du
)

. Inverting, we find that

I = 1
z = ekP0t+(1/2)krt2

(
1
I0

+ k
∫ t

0 ekP0u+(1/2)kru2
du
)−1

.

3. a. If Q(x) ≡ 0, then the equation has the form dy
dx + P(x)y = 0, or dy

dx = −P(x)y, so

that we can separate the variables and get dy
y = −P(x)dx. Integrating, we get ln |y| =

− ∫
P(x)dx + C1, so that |y| = C2e− ∫

P(x)dx and y = Ce− ∫
P(x)dx. This is the general

solution, yGH, of the homogeneous equation.
b. Letting y(x) = e− ∫

P(x)dx ·∫ e
∫

P(x)dxQ(x)dx, we see (Product Rule and FTC) that dy/dx =
e− ∫

P(x)dx · e
∫

P(x)dxQ(x) − P(x)e− ∫
P(x)dx · ∫ e

∫
P(x)dxQ(x)dx = Q(x) − P(x)e− ∫

P(x)dx ·
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∫
e
∫

P(x)dxQ(x)dx and dy/dx + P(x)y = Q(x) − P(x)e− ∫
P(x)dx · ∫ e

∫
P(x)dxQ(x)dx +

P(x) ·
(
e− ∫

P(x)dx
∫

e
∫

P(x)dxQ(x)dx
)

= Q(x), so that y(x) is a particular solution of

the nonhomogeneous equation. Thus formula (2.2.2) can be expressed as yGNH =
yGH + yPNH.

c. Since L(y) = dy
dx + P(x)y is a linear operator, the Superposition Principle yields

L
(
yGNH

) = L
(
yGH + yPNH

) = L
(
yGH

) + L
(
yPNH

) = 0 + Q(x) = Q(x), as expected.

2.3 COMPARTMENT PROBLEMS
I consider compartment (or mixing) problems important illustrations of the power of lin-
ear ODEs. Students often have difficulties with these kinds of “word problems,” but usually
find them interesting. As is obvious from Examples 2.3.1–2.3.3, I emphasize the units of
measurement involved in such problems.

A

1. dp(t)
dt = bp(t) − dp(t) =

net growth rate︷ ︸︸ ︷
(b − d) p(t).

2. Suppose d = αp(t), where α is a constant. Then we have dp(t)
dt = bp(t) − (αp(t)) · p(t) =

p(t)(b − αp(t)) = bp(t)
(
1 − α

b p(t)
)
.

3. Suppose b = βp(t), where β is a constant. Then we have dp(t)
dt = βp(t) · p(t) − dp(t) =

p(t)(βp(t) − d) = βp(t)
(
p(t) − d

β

)
.

4. p(t) = rate of inflow − rate of outflow = [bp(t) + I(t)] − dp(t) = (b − d)p(t) + I.

B

1. a. dP
dt = kP − αt ⇒ dP

dt − kP = −αt ⇒ μ(t) = e
∫ −kdt = e−kt ⇒ d

dt

[
e−ktP

]
, =

−αte−kt ⇒ e−ktP = −α
∫

te−ktdt = −α
(−e−kt

k2 (1 + kt)
)

+ C ⇒ P = αt
k + α

k2 + Cekt .

Now P(0) = 1.285 ⇒ 1.285 = α
k2 + C, or C = 1.285 − α

k2 , so that we can write

the solution as P = αt
k + α

k2 +
(

1.285 − α
k2

)
ekt =

(
1.60625×10−3)t

0.0355 + 1.60625×10−3

(0.0355)2 +(
1.285 − 1.60625×10−3

(0.0355)2

)
e0.0355t ≈ (0.0452t + 1.275) + 0.01045e0.0355t .

b. In the year 2010, t = 20. Then P(20) =
(
1.60625×10−3)(20)

0.0355 + 1.60625×10−3

(0.0355)2 +(
1.285 − 1.60625×10−3

(0.0355)2

)
e0.0355(20) = 2.200736130 ≈ 2,200,736 people.

2. First note that the volume of material in the tank changes with time. Then
net rate = rate of inflow – rate of outflow, so that the volume of mixture in the tank is
increasing at the net rate of 4 gal/min − 3 gal/min = 1 gal/min. This says that dV/dt = 1,
so that V(t) = t + C. Since V(0) = 50 gal, we have V(t) = t + 50. If we let Q(t) denote the
quantity of potassium (in grams) in the tank at time t, with Q(0) = 0, then the concentration
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in the tank at time t is Q/(t + 50), in units of gm/gal. Therefore we have

dQ
dt︸︷︷︸

net rate of change of potassium in tank (gm/min)

=
(

4
gal

min
· 10

gm
gal

)
︸ ︷︷ ︸

rate of inflow (gm/min)

−
(

3
gal

min
· Q(t)

t + 50
gm
gal

)
︸ ︷︷ ︸

rate of outflow (gm/min)

,

so that we have dQ
dt +

(
3

t+50

)
Q = 40, a linear equation with integrating factor μ(t) =

e
∫ 3

t+50 dt = (t + 50)3. Then d
dt

[
(t + 50)3Q

] = 40(t + 50)3, so that (t + 50)3Q = ∫
40(t +

50)3dt = 10(t+50)4+C, or Q(t) = 10(t+50)4+C
(t+50)3 = 10(t+50)+ C

(t+50)3 . The initial condition

Q(0) = 0 ⇒ 0 = 10(50) + C
(50)3 , so that C = −10(50)4 and Q(t) = 10(t + 50) − 10(50)4

(t+50)3 .
Since V(t) = t + 50 and the tank holds 100 gallons, the tank will be full when t = 50.

Then Q(50) = 10(50 + 50) − 10(50)4

(50+50)3 = 937.5 gms and the concentration of potassium

at this time is 937.5 gms
100 gal = 9.375 gms/gal.

3. Let A(t) denote the amount of salt in the tank after t minutes. Since the tank is ini-
tially full of pure water, A(0) = 0. The rate at which salt is being added to the tank is(1

4 lb/gal
)
(1 gal/min) = 1

4 lb/min. The rate (2 gal/min) at which both pure water and
brine are entering the tank is equal to the rate at which the mixture is being removed,
so that at any time t the amount of liquid in the tank is constant at 100 gallons. Then
the concentration of salt in solution in the tank is expressed as A(t)/100. Consequently,

the rate at which salt is being removed from the tank is then
(

A(t)
100

lb
gal

)(
2 gal

min

)
= A(t)

50
lb

min .

Since net rate = rate of inflow – rate of outflow, we have the IVP dA
dt = 1

4 − A(t)
50 , A(0) = 0.

We can write the equation in the standard form of a linear equation: dA
dt + 1

50 A(t) = 1
4 ,

which has an integrating factor μ(t) = e
∫ 1

50 dt = e
t

50 . Then d
dt

[
e

t
50 A

]
= 1

4 e
t

50 , so that

e
t

50 A = 1
4

∫
e

t
50 dt = 25

2 e
t

50 +C, or A(t) = 25
2 +Ce− t

50 . The initial condition A(0) = 0 implies

that 0 = A(0) = 25
2 + C, so that C = −25/2 and A(t) = 25

2 − 25
2 e− t

50 = 25
2

(
1 − e− t

50

)
.

[Note: The differential equation can also be solved as a separable equation.]
4. a. If X(t) is the amount (in grams, for example) of chlorine in solution at time t, then the

rate at which chlorine is entering the tank is (0.01gm/gal)(2gal/sec) = 2/100gm/sec
and the rate at which chlorine is leaving is(

X
200 − t

gm
gal

)
·
(

3
gal
sec

)
= 3X

200 − t
gm
sec

.

Note that the net amount of liquid in the tank is changing at the rate 2 gal/sec −
3 gal/sec = −1 gal/sec, so that the amount of liquid in the tank at any time t is given
by 200 − t. Using the principle net rate = rate of inflow – rate of outflow, we get the
equation

dX
dt

= 2
100

− 3X
200 − t

, or
dX
dt

+
(

3
200 − t

)
X = 2

100
.
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Multiplying by the integrating factor e
∫ 3

200−t dt = e−3 ln(200−t) = (200 − t)−3 and
integrating, we get X(t) = 1

100 (200 − t) + C(200 − t)3.

Since X(0) = 0, we find that 0 = 200
100 + C(200)3, or C = − 200

100(200)3 = − 2
(200)3 .

Therefore X(t) = 1
100 (200 − t) − 2

(200)3 (200 − t)3. Now the tank is half full when
200 − t = 100, or t = 100, so that the concentration of chlorine at this time is
X(100)

100 = 100
10000 − 2(100)3

100(200)3 = 0.0075 = 0.75% solution.
b. When the tank is half full, it contains 100 gallons. If 100 gallons of 1% solution is

added, then 1 gram (= 100 gal × 0.01 gm/gal) is added to the 3
4 gram (= 100 gal ×

0.0075 gm/gal), making a total of 1.75 grams of chlorine in the 200 gallon tank,
resulting in a concentration of 1.75/200 = 0.00875 gm/gal = 0.875%.

5. a. Because liquid is running into the tank at the rate of 3 gal/min and running out of
the tank at the rate of 2 gal/min, the net effect is that the tank is increasing its liquid
content at the rate of 1 gal/min. Thus at time t(in minutes), the tank has 50+ t gallons
of liquid. After 50 minutes, the tank contains 50 + 50 = 100 gallons of liquid.

b. The rate of inflow of the salt (in pounds per minute) is 2 lbs/gal × 3 gal/min =
6 lbs/min. If Q(t) denotes the quantity (pounds) of salt in the tank at time t, then
the rate at which salt is leaving the tank (the rate of outflow) is given by 2 gal/min ×
Q(t)/(50 + t) lbs/gal = 2Q(t)/(50 + t) lbs/min. Thus the differential equation is
dQ
dt = 6 − 2Q

50+t , a linear equation which can be written as dQ
dt +

(
2

50+t

)
Q = 6. The

integrating factor is μ(t) = e
∫ 2

50+t dt = (50 + t)2. Then d
dt

[
(50 + t)2Q

] = 6(50 + t)2, so
(50 + t)2Q = 6

∫
(50 + t)2dt = 2(50 + t)3 + C and Q = 2(50 + t)+ C(50 + t)−2. Since

Q(0) = 0, we find that C = −2(503). When t = 50, Q = 2(50 + 50) − 2(503)(50 +
50)−2 = 200 − 25 = 175 pounds.

6. Note that the rate of inflow of the salt is 0 lbs/min because only fresh (pure) water enters
the tank. The volume of fluid in the tank at time t is (100 + t) gallons since the net rate of
increase of the initial fluid in the tank is (3 − 2) gallons per minute. Now let Q(t) denote
the amount of salt (in pounds) in solution at time t. Then dQ/dt = −2Q/(100 + t) since
2 gal/min of the mixture runs out. Separating the variables and integrating, we get ln Q =
−2 ln(100 + t) + C. Since Q(0) = 75, we find that C = ln

[
75(1002)

]
. Exponentiating, we

conclude that Q(t) = 75(1002)/(100 + t)2. When t = 1.5 hours = 90 minutes, we have
Q ≈ 20.8 lbs.

7. Let Q(t) be the amount of the pollutant in the pool at time t. When t = 0, Q = 20. We
want Q to be less than 1. If we leave the pool filled and flush it with pure water, Then
dQ/dt = −100Q/104, which has the solution Q = Ce−t/100. We have C = 20, so asking
for Q = 1 gives us t ≈ 300 minutes ≈ 5 hours.

If we, instead, empty the pool to the halfway point without adding more water (thereby
removing half the pollutant), which takes 50 minutes, and then start the flushing policy,
we have the equation dQ/dt = −100Q/5000 with initial condition Q(0) = 10. This has
the solution Q(t) = 10e−t/50; and Q reaches 1 when t ≈ 115.13 minutes. The total time
will then be 165.12 minutes, which saves about 2.2 hours over the other method. Refilling
would take 50 more minutes.
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8. If all new employees were women, the differential equation would be dW
dt = 50 −(

100
6000−50t

)
W , which leads to W(t) = (6000 − 50t) + C(6000 − 50t)2. Now W(t) = 1500

when t = 0, so that C = −1/8000. Then when t = 40, W(t) = 2000, which is one-half,
or 50%, of the staff at that time.

C
1. Let X(t) denote the concentration (in gm/cm3) of drugs in the organ at time t. Then

X(0) = 0 and we want X(t) ≤ cmax. The amount of the drug entering the organ is given

by
(
r cm3

sec

)
×

(
c gm

cm3

)
= rc gm/sec and the amount leaving is

(
r cm3

sec

)
×

(
X(t) gm

cm3

)
=

rX(t) gm/sec. Since the amount of the drug in the organ is given by VX, where V is the
constant volume of the organ, we have the following linear equation balancing inflow
and outflow:

d
dt

(VX) = rc − rX, or
dX
dt

+
( r

V

)
X = rc

V
.

Using the integrating factor e
∫ r

V dt = ert/V , we find that X(t) = c + Ke−rt/V . The condi-
tion X(0) = 0 yields K = −c, so that X(t) = c − ce−rt/V = c

(
1 − e−rt/V

)
. Then X(t) =

c
(
1 − e−rt/V

) ≤ cmax ⇒ 1 − cmax
c ≤ e−rt/V ⇒ ln

(
1 − cmax

c

) ≤ − rt
V ⇒ ln

( c−cmax
c

) ≤ − rt
V ⇒

− ln
( c−cmax

c

) ≥ rt
V ⇒ ln 1 − ln

( c−cmax
c

) ≥ rt
V ⇒ ln

(
c

c−cmax

)
≥ rt

V ⇒ t ≤ V
r ln

(
c

c−cmax

)
.

2. Let Q(t) denote the amount of salt (in pounds) in the tank at time t (in minutes). Note
that the volume of fluid in the tank is not constant: At t = 0, the volume is 50, while at
time t > 0 it is 50 + 5t. The description of the inflow and the outflow yields the equation
dQ/dt = (4) · 1

2 − 3Q/(50 + 5t). We note that Q(0) = (50) · 1
3 = 50/3 pounds.

Overflow occurs when t = 10, so we want the value of Q when t = 10. The differential
equation is linear, so we solve in the usual way: μ(t) = (50+5t)3/5, d

dt

[
(50 + 5t)3/5Q(t)

] =
2(50 + 5t)3/5, Q(t) = 1

4 (50 + 5t) + C(50 + 5t)−3/5. Using the initial condition, we find

that C = (50)8/5/12. Then Q(t) = 1
4 (50 + 5t) + (50)8/5

12 (50 + 5t)−3/5 and Q(10) = 1
4 (50 +

50) + (50)8/5

12 (50 + 50)−3/5 = 25 + 25
6(2)3/5 ≈ 27.749 lbs. Thus the concentration at overflow

is 27.749/100 = 0.2775 lb/gal.

2.4 SLOPE FIELDS
Slope fields, or direction fields, are fundamental to a geometrical (qualitative) interpretation
of first-order differential equations. Students should be encouraged to get some graph paper
and construct some slope fields by hand, using isoclines as suggested in the text. Graphing
calculators can be programmed to produce slope fields. In Maple, the often-used command
Deplot will give a slope field and, if initial conditions are provided, will produce solution
curves. The corresponding instruction PlotVectorField does the trick in Mathematica.
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Autonomous equations represent physical systems whose rules of evolution do not change
with time. A nonautonomous system is also called a time-dependent system. Autonomous
equations are relatively easy to analyze qualitatively because the solution curves suggested by
the lineal elements do not intersect one another. Put another way, autonomous equations
are characterized by their invariance with respect to all translations t′ = t + c of the time axis.
This is the point of Exercise C1.

Example 2.4.3 and Exercise B7 are inspired by material produced by the Boston University
Differential Equations Project. The logistic equation appears in Exercise B8(b). Exercise B9
comes from the classic text by Agnew, where the equation is described as having arisen in a
physics problem.

A

1.

2. Note that the equations in Exercises 1 and 2 are the same.
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3.

4.

5.
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6.

7.

8.
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9.

10.

11.
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12.

13.

14. Some solution curves have vertical asymptotes.
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15.

16. a.

b.
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17.

18. The isoclines are the curves defined by dy/dt = C, where C is a constant. In this case
we have (y + t)/(y − t) = C, y + t = C(y − t) = Cy − Ct, so that y − Cy = −t − Ct, or
y = −((1 + C)/(1 − C))t. For C �= 1, this describes a one-parameter family of straight
lines through the origin. For C = 1, we get the y-axis as the isocline.

19. The equations in Exercises 4, 5, 8, and 14 are autonomous: In each case the independent
variable does not appear explicitly.

B

1. a.

b. x → 40 as t → ∞.
2. If c > 0, we have something like
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For c < 0, the slope field looks like

3. 1√
1+t2+y2

= C ⇒ 1
1+t2+y2 = C2 ⇒ 1 + t2 + y2 = ( 1

C

)2 ⇒ t2 + y2 = ( 1
C

)2 − 1. Thus the

isoclines are circles of radius
√( 1

C

)2 − 1, where 0 < |C| ≤ 1.

4. xy dy
dx = y2 − x2 ⇒ dy

dx = y2−x2

xy , and y2−x2

xy = 0 ⇒ y2 = x2 ⇒ y = ±x. Thus the nullclines
are straight lines through the origin with slopes ±1. Actually, the origin must be omitted
because of the potential division by zero.

5. In Exercise B1, we have dx
dt = k(α − x)(β − x), so dx

dt = 0 if and only if x = α or x = β.
6. Equation (a) is nonautonomous. Therefore along any horizontal line y = k in the slope

field, the slopes will change as the value of t changes. Equation (b) is also nonautonomous,
but the slope field depends only on the value of the independent variable t. Here every
solution curve has the form y = ∫ t

t0
f (x)dx + y0. Equation (c) is autonomous, so that along

any horizontal line y = k in the slope field, the slopes will be constant.
7. Equation (1) is autonomous and can only match slope field (C) or (D). Noting that

dy/dt = 0 only for y = −1, we conclude that (1) matches (C). We can also see that
dy/dt < 0 for y < −1, again giving us (C) as the match. Equation (2) is nonautonomous,
giving us (A) or (B) as the only possible matches. Since dy/dt = 0 only for y = t, we
look for horizontal “steps” along this line through the origin. Slope field (A) has this
feature. We also note that dy/dt > 0 for y > t and dy/dt < 0 for y < t, a feature present
in slope field (A). Equation (3) is nonautonomous, with the vertical line t = −1 as its
only nullcline. Furthermore, by integrating both sides of the equation with respect to t,
we find that the solutions are the parabolas y = t2/2 + t + C. Only slope field (B) has
the two features described.

8. a.
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If the initial point is above the t-axis (i.e., y(t0) = y0 < 0), then y → ∞ as t → ∞.
If the initial point is on the t-axis, the solution curve is the t-axis—that is, y(t) = 0
for all values of t. Finally, if the initial point is below the t-axis, then y → −∞ as
t → ∞.

b.

If the initial value of P, P0, is above 1, then P → 1 as t → ∞. For 0 < P0 < 1, we
have P → 1 as t → ∞. If P0 < 0, then P → −∞ as t → ∞.

c.

A careful examination of the slope field reveals that when y(0) < 1/2, we seem to
have y(t) → −∞ as t → ∞ and when y(0) > 1/2 we have y(t) → ∞ as t → ∞.
When y(0) = 1/2, the solutions tend to 0.
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d.

Some solutions seem to be unbounded (positively or negatively) as t tends to infinity,
while others seem to be periodic. The initial condition is essential in determining
which of these behaviors to expect.

9.

The slope field indicates that any solution must be an increasing function. Analytically,
the fact that exp(−2xy) is always positive tells us this. Some solutions in the second
quadrant seem to have vertical asymptotes, so that they “blow up in finite time,” while
other solutions starting out in this area flatten out (approach some finite value asymp-
totically) as they pass through the first quadrant. Solutions with initial points in the
third quadrant are almost flat until they pass into the first or fourth quadrants. Starting
out in the fourth quadrant, a solution will start out having a very large slope, but will
move into the first quadrant and approach a positive finite value asymptotically. Overall
then, we see that as x → ∞, we have both y → ∞ and y → a, where a is a positive real
number. As x → −∞ (i.e., as we look at the slope field from right to left), we see that
y → ∞ or y → 0.
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10. a.

b. x(t) → 1 as t → ∞
c. x(t) → 1 as t → ∞
d. x(t) → −1 as t → ∞
e. x(t) → −1 as t → ∞

C

1. Suppose that x = ϕ(t) is a solution of the autonomous equation dx/dt = f (x) = f (x(t)).
Now Consider y(t) = ϕ(t + k), where k is any real number. Then y′(t) = [ϕ(t + k)]′ =
ϕ′(t + k) · (t + k)′ = ϕ′(t + k) = f (ϕ(t + k)) = f (y(t)), so y(t) is also a solution.

2. Since cos t = sin
(
t + π

2

)
, we use Exercise C1 (with k = π/2) to conclude that cos t is also

a solution of the autonomous equation.

2.5 PHASE LINES AND PHASE PORTRAITS
Phase lines and phase portraits are important qualitative tools for studying autonomous first-
order differential equations. The extension of these ideas to autonomous systems of differential
equations is given in Section 4.7.

The logistic equation is an important model that seems to have treated by anyone who has
ever written about ODEs. The treatment I give is appropriate for a calculus course once the
significance of the second derivative has been established.

<It’s useful to look at the slope fields for the equations in Exercises 1–12 as a check.>

A

1. We have dy/dt = y2 − 1 = (y + 1)(y − 1), so that the critical points are y = −1 and
y = 1. These points split the y-axis into three intervals: −∞ < y < −1, −1 < y < 1,
and 1 < y < ∞. If y < −1, then dy/dt > 0. If −1 < y < 1, then dy/dt < 0. Finally, for
y > 1, dy/dt > 0. The resulting phase portrait is

21 1
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2. Here we see that y = 0 and y = 1 are the critical points. Since y′ is the product of squared
expressions, we have y′ > 0 for all values of y other than 0 and 1 Thus the phase portrait
looks like

0 1

3. The critical points are x = −1 and x = 3. In the subinterval x < −1, x′ > 0. In the
subinterval −1 < x < 3, x′ < 0. For x > 3, we have x′ > 0:

21 3

4. The function cos x is zero at odd multiples of π/2—that is, at points of the form
(2k + 1)π/2, k = 0, ±1, ±2, . . .. Looking at the graph of cos x, we see (for example) that
x′ > 0 on the intervals . . . , (−5π/2, −3π/2), (−π/2, π/2), (3π/2, 5π/2), . . . and x′ < 0 on
the intervals . . . , (−3π/2, −π/2), (π/2, 3π/2), (5π/2, 7π/2), . . .. Using the fact that the
cosine is an even function (i.e., cos(−x) = cos x) so that its graph is symmetric about the
y-axis, we can express our observations neatly as follows: x′ > 0 on the intervals
(−π/2+2kπ, π/2+2kπ), k = 0, ±1, ±2, . . . and x′ < 0 on the intervals (π/2+2kπ, 3π/2+
2kπ), k = 0, ±1, ±2, . . .. The resulting phase portrait is

2�/2 �/2 3�/2 5�/2 7�/2 9�/2 11�/2

5. We have critical points where ey = 1—that is, when y = 0. For y < 0, y′ < 0; while for
y > 0, we have y′ > 0:

0

6. The critical points are y = 0, 1, and 2. For y < 0, y′ < 0. For 0 < y < 1, y′ > 0. For
1 < y < 2, y′ < 0. For y > 2, y′ > 0. The phase portrait is

0 1 2

7. This is similar to Exercise 4. The critical points are y = kπ, where k = 0, ±1, ±2, . . ..
Examination of the graph of the sine reveals that y′ > 0 on the intervals (2kπ, (2k +
1)π), k = 0, ±1, ±2, . . . and y′ < 0 on the intervals ((2k − 1)π, 2kπ), k = 0, ±1, ±2, . . .:

23� 22� 2� 0 � 2� 3�
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8. Technically, there is no critical point for this equation since x′ = 1−x/(1+x) = 1/(1+x)
is never zero. However, we can see that x′ fails to exist x = −1, so that we can focus on
this point. We see that x′ > 0 for x > −1 and x′ < 0 for x < −1:

21

9. The only critical point is y = 0. It is easy to see that y′ > 0 when y > 0 and y′ < 0 when
y < 0:

0

10. The critical points are those values of y for which either sin y = 0 or cos y = 0. This is the
set of values given by y = kπ/2, k = 0, ±1, ±2, . . .. If we look at the graph of sin y cos y,
we see that ẏ > 0 on the intervals

(
kπ, (k + 1

2 )π
)

, k = 0, ±1, ±2, . . . and ẏ < 0 on the
intervals

(
(k − 1

2 )π, kπ
)

, k = 0, ±1, ±2, . . .:

22� 23�/2 2�/2 �/22� 0 � 3�/2 2�

11. The critical points are x = 0, 1, and 3. For x < 0, dx/dt > 0. For 0 < x < 1, dx/dt < 0.
For 1 < x < 3, we have dx/dt > 0. Finally, for x > 3, dx/dt < 0. The phase portrait is

0 1 3

12. The critical points are y = −2, 0, and 2. For y < −2, dy/dt < 0. For −2 < y < 0, we have
dy/dt > 0. For 0 < y < 2, dy/dt < 0. For y > 2, dy/dt > 0. The phase portrait is

22 0 2

13. The only critical point is x = 0. If x < 0, dx/dt < 0. If x > 0, we have dx/dt < 0 again.
The phase portrait is

0

14. From the phase portrait in Exercise 11, we see that if the population x(t) falls below 1
(hundred, thousand, million,…), then x(t) → 0 as t → ∞—that is, the creatures being
modeled become extinct.

15. a. There are no critical points because −1
2 ≤ 1

2 cos x ≤ 1
2 for all values of x. Thus ẋ > 0

for all values of x. The phase portrait is
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b. All solutions are monotonically increasing. (You can also examine the slope field of
this autonomous equation.)

16.

a � 0 a � 0 a � 0

B

1. a. We can rewrite the equation as dI
dt = 24 − 20I. Setting the derivative equal to zero, we

see that the only critical point is I = 6/5 = 1.2. When I < 1.2, we have dI
dt > 0; and

when I > 1.2, we see that dI
dt < 0. The phase portrait is

1.2

b. If the initial current, I(0), is 3 amps, it is to the right of the critical point, so that the
current tends to decrease toward 1.2 amps as t gets larger.

2. a. We have dx
dt = k(250 − x)(40 − x). Setting the derivative equal to zero, we have the

critical points x = 40 and x = 250. If x < 40, then (250 − x) > 0 and (40 − x) < 0,
so that dx/dt > 0 (remembering that k > 0). If 40 < x < 250, then (250 − x) > 0
and (40 − x) < 0, so that dx/dt < 0. Finally, if x > 250, then (250 − x) < 0 and
(40 − x) < 0, so that dx/dt > 0. The phase portrait is

40 250

b. If x(0) = 0, then dx/dt > 0 and x increases toward 40 as t → ∞. (See the slope field
for problem B1 in Exercises 2.4.)

3. a. The critical points are v = ±√
9.8/c. The phase portrait is

0 !ßß9.8/c

b. The positive equilibrium solution is v = √
9.8/c, which is a sink. (This value of v is

called the terminal velocity.)
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4. We see that y = −1 is the only critical point. Since dy/dt is a square, dy/dt ≥ 0 for all
values of y. Thus any solution y must be a nondecreasing function. The phase portrait is

21

a. If y(0) > −1, the graph of y(t) must increase away from y = −1 as t increases.
b. If y(0) < −1, the graph of y(t) must increase toward the line y = −1 as t increases—

that is, the line y = −1 is a horizontal asymptote for such a solution. An analysis of
d2y/dt2 reveals that y is concave up when y > −1 and concave down when y < −1.

5. a. The critical points are P = 0, 7, and 15. For P < 0, dP/dt > 0. For 0 < P < 7, we have
dP/dt < 0. For 7 < P < 15, dP/dt > 0. Finally, for P > 15, dP/dt < 0. The phase
portrait is

0 7 15

Since the initial condition falls in the interval 0 < P < 7, we see that P(t) is decreasing
toward the t-axis—that is, P(t) → 0 as t → ∞.

6. a. For example, x′ = x(x − 1)2.
b. For example, x′ = −(x + 5)(x + 5) = 25 − x2.
c. For example, x′ = (x − 2)2(x − 7).

7. See the graph for B7 on p. 453 of the text.
8. One possible answer is dQ/dt = Q(Q + 1)2(Q − 2). Exercises A3 and A6 provided some

clues.

C

1. The critical point is x = −1/(2α − 1) = 1/(1 − 2α), x �= 1/2.
Case 1: α < 1/2 This implies that 2α − 1 < 0 and so 1/(2α − 1) < 0. Consequently,
if x < 1/(1 − 2α) = −1/(2α − 1), then (2α − 1)x > −1 and (2α − 1)x + 1 > 0. If
x > 1/(1 − 2α) = −1/(2α − 1), then (2α − 1)x < −1 and (2α − 1)x + 1 < 0. The phase
portrait shows that x(t) → 1/(1 − 2α) as t → ∞.

1/(122�)

Case 2: α > 1/2 This implies that 2α − 1 > 0 and so 1/(2α − 1) > 0. Consequently,
if x < 1/(1 − 2α) = −1/(2α − 1), then (2α − 1)x < −1 and (2α − 1)x + 1 < 0. If
x > 1/(1 − 2α) = −1/(2α − 1), then (2α − 1)x > −1 and (2α − 1)x + 1 > 0. The phase
portrait shows that x(t) → +∞ as t → ∞.

1/(122�)
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2. x′ = (α2 − 1)x + 1 + α : x′ = 0 implies that x = (1 + α)/(1 − α2).
Case 1: −1 < α < 1 This implies that α2 − 1 < 0. Then x < (1 + α)/(1 − α2) implies
(α2 − 1)x > (α2 − 1)(1 + α)/(1 − α2) = −(1 + α), so (α2 − 1)x + 1 + α > 0. Similarly,
if x > (1 + α)/(1 − α2), then (α2 − 1)x < (α2 − 1)(1 + α)/(1 − α2) = −(1 + α), so
(α2 − 1)x + 1 + α < 0. The phase portrait shows that x(t) → (1 + α)/(1 − α2) as t → ∞.

(11�)/(12�2)

Case 2: |α| > 1 This is equivalent to α < −1 or α > 1. Thus α2 − 1 > 0 and (1 + α)/(1 −
α2) < 0. Now if x < (1+α)/(1−α2), then (α2 −1)x < (α2 −1)(1+α)/(1−α2) = −(1+α),
so (α2 − 1)x + 1 + α < 0. On the other hand, if x > (1 + α)/(1 − α2), then we see that
(α2 − 1)x + 1 + α > 0. The phase portrait shows that x(t) → +∞ as t → ∞.

(11�)/(12�2)

Note that if α = −1, then x′ = 0, so x is a constant function.
3. a. dx

dt = ax − bx3 = x(a − bx2) = 0 ⇔ x = 0, −√
a/b, or

√
a/b. We have four intervals to

examine:
(
−∞, −√

a/b
)

,
(
−√

a/b, 0
)

,
(

0,
√

a/b
)

, and
(√

a/b, ∞
)

.

(1) If x < −√
a/b, then x < 0 and x2 > a/b, bx2 > a, −bx2 < −a, a − bx2 < 0, so that

dx/dt > 0.
(2) If −√

a/b < x < 0, then x < 0 and x2 < a/b, bx2 < a, −bx2 > −a, a − bx2 > 0, so
that dx/dt < 0.

(3) If 0 < x <
√

a/b, then x > 0 and x2 < a/b, bx2 < a, −bx2 > −a, a − bx2 > 0, so
that dx/dt > 0.

(4) When x >
√

a/b, then x > 0 and x2 > a/b, bx2 > a, −bx2 < −a, a − bx2 < 0, so
that dx/dt < 0.

Using the preceding analysis, we can draw the following phase portrait: [See phase
portrait for C3a. on p. 454 of the text.]

b. If x(0) is slightly larger than
√

a/b, the phase portrait indicates that x(t) will decrease
to

√
a/b as t increases.

c. If x(0) = 0, then x(t) stays at zero as t increases. Since dx/dt = 0 when x = 0, we see
that there is no change in the value of x(t) at this point.

d. If x(0) is slightly smaller than
√

a/b, the phase portrait indicates that x(t) will increase
to

√
a/b as t increases.
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2.6 EQUILIBRIUM POINTS: SINKS, SOURCES, AND NODES
This section continues to develop the qualitative analysis begun in the previous section.
This material falls under the heading of stability theory, and is restricted to the study of the
asymptotic behavior of solutions of autonomous first-order ODEs. These concepts will be
extended to systems in Chapter 4, and the behavior of solutions of autonomous linear sys-
tems will be analyzed completely in Chapter 5. Chapter 7 applies these ideas to nonlinear
systems.

Given an autonomous equation x′ = f (x), an equilibrium solution ψ is said to be an asymp-
totically stable solution (sink, attractor) if, given any ε > 0, there exists a δ > 0 such that any
solution ϕ of the equation satisfying |ϕ(0) − ψ(0)| < δ satisfies |ϕ(t) − ψ(t)| < ε for t ≥ 0 and
|ϕ(t) − ψ(t)| → 0 as t → ∞. This idea is also referred to as Lyapunov stability. Similar precise
definitions can be given to sources and nodes.

Exercise A16 asks the student to consider a simple version of a balance equation. Balance
equations, also called conservation equations, are mathematical statements of the fact that
what goes into a system must be stored, come out, or be transformed into something else:
matter, energy, and momentum can’t just appear or disappear without explanation. Equation
(2.3.1), a fundamental principle in working with compartment models, is an equation of this
kind. Students who are studying ecology or environmental engineering will see these types
of equations many times.

For more information on the Gompertz equation given in Exercise B3, see Mathematical Models in
Biology by L. Edelstein-Keshet (McGraw-Hill, 1988; reissued by SIAM) or “Models for Growth”
by E. B. Appelbaum (College Math. J 32 (2001), 258–259), an article written by someone who
has suffered from cancer. Exercise C1 asks the student to give a qualitative analysis of the
logistic equation with harvesting (or culling).

< Confirm the answers for Exercises 1–12 by looking at slope fields or phase portraits.>

A

1. f (y) = y2(1 − y)2 and f ′(y) = 2y(2y − 1)(y − 1). The equilibrium points are y = 0 and
y = 1. Now f ′(0) = 0 and f ′(1) = 0, so that the Derivative Test fails. However, we see
that f ′(y) < 0 for values of y below 0 and f ′(y) > 0 for values of y above 0, so that
y = 0 behaves like both a sink and a source and so is a node. Similarly, f ′(y) < 0 for
values of y just below 1 and f ′(y) > 0 for values above 1, indicating that y = 1 is also a
node.

2. f (x) = cos x and f ′(x) = − sin x. The equilibrium points are the odd multiples of π/2—
that is, points of the form (2k + 1)π/2, k = 0, ±1, ±2, . . .. Now f ′((2k + 1)π/2) =
− sin((2k + 1)π/2) = − sin(kπ + π/2) = − cos(kπ) = (−1)k+1. (If you don’t remember
these trigonometric facts, just look at the graph of y = − sin x to see the pattern.) Thus
f ′(x) > 0 and x is a source when k is odd—that is, when x = . . . −9π/2, −5π/2, −π/2,
3π/2, 7π/2, . . .—and f ′(x) < 0, so that x is a sink, when x = . . . −7π/2, −3π/2, π/2,
5π/2, 9π/2, . . ..
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3. f (y) = ey − 1 and f ′(y) = ey . The only equilibrium point is y = 0. Since f ′(0) = 1 > 0,
we see that y = 0 is a source.

4. f (y) = y2
(
y2 − 1

)
and f ′(y) = 2y

(
2y2 − 1

)
. The equilibrium points are y = −1, 0, and 1.

Now f ′(−1) = −2 < 0, so that y = −1 is a sink; and f ′(1) = 2 > 0, so that y = 1 is a
source. We have f ′(0) = 0, so that our usual test fails. Since f ′(y) < 0 for values of y just
less than 0 and f ′(y) > 0 for values of y just greater than 0, we conclude that y = 0 is a
node.

5. f (x) = ax + bx2 and f ′(x) = a + 2bx. The equilibrium points are x = −a/b and 0. Since
f ′(−a/b) = −a < 0, we see that x = −a/b is a sink. Since f ′(0) = a > 0, we conclude
that x = 0 is a source.

6. f (x) = x3 − 1 and f ′(x) = 3x2. The only equilibrium point is x = 1. Since f ′(1) = 3 > 0,
we see that x = 1 is a source.

7. f (x) = x2 − x3 and f ′(x) = x(2 − 3x). The equilibrium points are x = 0 and 1. Since
f ′(1) = −1 < 0, x = 1 is a sink. But x = 0 is a node because f ′(x) > 0 for values of x just
below and just above 0.

8. f (y) = 10 + 3y − y2 = (2 + y)(5 − y) and f ′(y) = 3 − 2y. The equilibrium points are
y = −2 and 5. Since f ′(−2) = 7 > 0, y = −2 is a source. Since f ′(5) = −7 < 0, y = 5 is
a sink.

9. f (x) = x(2 − x)(4 − x) and f ′(x) = 3x2 − 12x + 8. The equilibrium points are x = 0, 2,
and 4. Since f ′(0) = 8 > 0, x = 0 is a source. Since f ′(2) = −4 < 0, x = 2 is a sink.
Since f ′(4) = 8 > 0, x = 4 is a source.

10. f (x) = −x3 and f ′(x) = −3x2. The only equilibrium point is x = 0. Since f ′(0) = 0, we
investigate further. Since f ′(x) < 0 for every nonzero value of x, we conclude that x = 0
is a sink. The phase portrait confirms this:

0

11. f (x) = x3 and f ′(x) = 3x2. The only equilibrium point is x = 0. Since f ′(0) = 0, we
examine the situation more carefully. Since f ′(x) > 0 for every nonzero value of x, we
conclude that x = 0 is a source. The phase portrait confirms this:

0

12. f (y) = y ln(y +2) and f ′(y) = y/(y +2)+ ln(y +2). The equilibrium points are y = −1, 0.
Since f ′(−1) = −1 < 0, we know that y = −1 is a sink. Since f ′(0) = ln 2 > 0, y = 0 is
a source.

13. f (x) = x−cos x and f ′(x) = 1+sin x. Any equilibrium point x∗ must satisfy the equation
x∗ − cos x∗ = 0, or x∗ = cos x∗. We graph y = x and y = cos x separately on the same set
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axes and notice that the graphs intersect at exactly one point:

This point of intersection x∗ is the only equilibrium point. Since the graph indicates
that x∗ lies between 0 and π/2, we see that f ′(x∗) = 1 + sin x∗ > 1 > 0, so that this
equilibrium point (for which we have no explicit formula) is a source.

14. f (x) = x − e−x and f ′(x) = 1 + e−x. The only equilibrium point is x ≈ 0.5671. Since
f ′(x) > 0 for all x, f ′(0.5671) > 0 and so x = 0.5671 is a source.

15. x′ = x(x + 1)(x − 0.5)6: The equilibrium points are x = −1, 0, and 0.5. It will be easier
to examine the signs of x′ than to use the Derivative Test.

x Sign of Sign of Sign of Sign of
x x + 1 (x − 0.5)6 x′

−∞ < x < −1 − − + +
−1 < x < 0 − + + −
0 < x < 0.5 + + + +

x > 0.5 + + + +

The phase portrait that can be drawn using the information from the table shows that
x = −1 is a sink, x = 0 is a source, and x = 0.5 is a node.

0 0.521

16. a. This problem describes a compartment model (see Section 2.3).
dQ
dt = D

(
Q∗ − Q

) = 0 ⇔ Q = Q∗.
b. When Q < Q∗, dQ/dt > 0 and when Q > Q∗, dQ/dt < 0. Therefore the equi-

librium solution is a sink and therefore stable. You could also use the Derivative
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Test with f (Q) = D
(
Q∗ − Q

)
and f ′(Q) = −D : f ′(Q∗) = −D < 0 since D is

positive.

B

1. a. Mdu
dt = 8P

u − bSu2 = 0 ⇒ 8P − bSu3 = 0 ⇒ u = 3
√

8P
bS = 2 3

√
P
bS .

b. Since M represents mass, a positive constant in this case, it has no effect on the sign of

du/dt. Therefore we take f (u) = 8P
u −bSu2, so that f ′(u) = −8P

u2 −2bSu and f ′
(

2 3
√

P
bS

)
=

−8P

4
(

P
bS

) 2
3

− 2bS
(

2 3
√

P
bS

)
= −6P

1
3 (bS)

2
3 < 0, so that u = 2 3

√
P
bS is a sink.

c. The fact that the equilibrium speed 2 3
√

P
bS is a sink suggests that a rower may start from

rest with maximum acceleration but then tire a bit so that his or her speed would level
off at the equilibrium speed. If we observe the rower at a time when his or her speed
is greater than the equilibrium speed, then we can reasonably believe that he or she
may tire or the “drag force” bSu2 may exceed the “tractive force” 8P

u and so slow the
boat down.

2. a.

� 60

b. From part (a) we see that a is a sink and b is a source. We can also see this by noticing
that f ′(a) < 0 and f ′(b) > 0.

3. f (N) = −aN ln(bN) and f ′(N) = −a(1 + ln(bN)). Since the nature of the model implies
that N > 0 and since −aN < 0, the sign of f (N) depends on the sign of ln(bN). For 0 <

bN < 1, ln(bN) < 0. Thus f (N) = −aN ln(bN) > 0 for 0 < N < 1/b. For bN > 1 (that is,
for N > 1/b), ln(bN) > 0, so that f (N) = −aN ln(bN) < 0.

a. The phase portrait for this equation is

1/b0

b. A possible graph of f (N) against N (with a = 10 and b = 2) is on p. 454 of the text.
c. f (N) is undefined at N = 0, so that the only equilibrium point is N = 1/b. The

phase portrait given in (a) indicates that this is a sink. Also, f ′(1/b) = −a(1 + ln(1))

= −a < 0.
d. Assume that 0 < N ≤ 1 We have N̈(t) = f ′(N) = −a(1+ln(bN)) > 0, so that the graph

of N(t) is concave up, when 1+ln(bN) < 0—that is, when 0 < N < 1/be < 1/b (where
e is the base of the natural log). Similarly, N̈(t) < 0 and N(t) is concave down when
N > 1/be.
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e. Putting together the information from (c) and (d), we can sketch N(t):

4. There is no such equation. Between any two sinks, there must be a source. Suppose there
were three sinks, x1, x2, and x3, with x1 < x2 < x3. If we consider the phase portrait with
just x1 and x3 plotted, notice that any point between these two must behave like a source:

x1 x3

C

1. a. dP
dt = rP

(
1 − P

k

) − h = 0 ⇒ rP(k − P) − hk = 0 ⇒ −rP2 + rkP − hk =
0 ⇒ [by the Quadratic Formula] P = −rk ±

√
(rk)2−4(−r)(−hk)

−2r = −rk ±
√

rk(rk−4h)

−2r =
rk ∓

√
rk(rk−4h)

2r . If rk(rk − 4h) > 0, there are distinct real (and non-zero) solutions.
Since rk > 0, we have these two solutions if rk − 4h > 0, or h < rk

4 .

b. The smaller of the equilibrium solutions in (a) is PS = rk−
√

rk(rk−4h)

2r . Let f (P) =
rP
(
1 − P

k

) − h = rP − ( r
k

)
P2, so that f ′(P) = r − (2r

k

)
P and f ′(PS) = r −(2r

k

)( rk −
√

rk(rk−4h
2r

)
= r −

(
r − √

rk(rk − 4h
)

= √
rk(rk − 4h > 0. By the Deriva-

tive Test, PS is a source. Similarly, the larger of the equilibrium solutions is PL =
rk +

√
rk(rk−4h)

2r and f ′(PL) = r − (2r
k

)( rk +
√

rk(rk−4h
2r

)
= −√

rk(rk − 4h < 0, so that PL

is a sink.
2. f (x) = −x3 + (1 + α)x2 − αx = −x(x − α)(x − 1) and f ′(x) = −3x2 + 2(1 + α)x − α. Thus

the equilibrium solutions are x = 0, α, and 1.

a. α < 0 f ′(0) = −α > 0, so x = 0 is a source. Also, f ′(α) = α(1 − α) < 0, so x = α is a
sink; and f ′(1) = α − 1 < 0, so x = 1 is a sink.

b. 0 < α < 1 f ′(0) = −α < 0, so x = 0 is a sink. Then f ′(α) = α(1 − α) > 0, so x = α is
a source. Finally, f ′(1) = α − 1 < 0, so x = 1 is a sink.
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c. α > 1 f ′(0) = −α < 0, so x = 0 is a sink. Also, f ′(α) = α(1 − α) < 0, so x = α is a
sink. Finally, f ′(1) = α − 1 > 0, so x = 1 is a source.

d. α = 0 Then f (x) = −x3 + x2 = x2(1 − x) and f ′(x) = −3x2 + 2x. The equilibrium
solutions are x = 0 and x = 1. We see that f ′(0) = 0, so the Derivative Test is
inconclusive. However, for x < 0, ẋ = f (x) > 0; for 0 < x < 1, ẋ > 0; and for
x > 1, ẋ < 0. This tells us that x = 0 is a node, whereas x = 1 is a sink.

e. α = 1 Then f (x) = −x3 + 2x2 − x = −x(x − 1)2 and f ′(x) = −3x2 + 4x − 1. The
equilibrium solutions are x = 0 and x = 1. Now f ′(0) = −1 < 0, so x = 0 is a sink;
and f ′(1) = 0, so the Derivative Test fails. However, ẋ < 0 for 0 < x < 1 and ẋ < 0 for
x > 1, so x = 1 is a node.

*2.7 Bifurcations

This section is optional. The concept of a bifurcation appears here and there in later exercises,
but the explanations are self-contained. Strogatz’s book, Nonlinear Dynamics and Chaos: with
Applications to Physics, Biology, Chemistry and Engineering (Addison-Wesley, 1994), contains
good examples.

Instead of analyzing the behavior of the quadratic function x2 + x + c via the completion of
squares as in equation (2.7.1), I sometimes use the quadratic formula immediately.

My experience has been that the concept of a bifurcation diagram needs slow, careful expla-
nation. It sometimes takes a while for students to digest the fact that they are graphing the
solution of an autonomous equation against the values of a parameter.

The treatment of the laser in Example 2.7.3 is adapted from Strogatz’s book.

Exercise B1 is a special case of Exercise C1 of the last section, which is now revealed as a
bifurcation problem. For some background on the biology and mathematics of Exercise C2,
see Section 7.5 of Mathematical Models in Biology by L. Edelstein-Keshet (McGraw-Hill, 1988;
reissued by SIAM).

A

1. (1) (Also, see answer on p. 455 of the text.)

c , 0 c 5 0 c . 0
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(2) Clearly the number and the nature of the equilibrium solution(s) depend on the
value of c. If c = 0, there is only one equilibrium solution, x = 0. If c < 0, there is
no equilibrium solution; and if c > 0, there are two equilibrium solutions, x = ±√

c.
The only bifurcation point is c = 0.

(3) See bifurcation diagram on p. 455 of the text.
2. (1)

(2) We have f (x) = 1 + cx + x2 = 0 ⇔ x = −c±√
c2−4

2 . Clearly the number and the nature
of the equilibrium solution(s) depend on the value of the discriminant c2 − 4. Note
that if c = −2 or c = 2, there is only one equilibrium point, x = −c/2. If c < −2,
then c2 −4 > 0 and there are two real equilibrium points given by the formula above.
When −2 < c < 2, we have c2 − 4 < 0, so that there is no equilibrium solution.
Finally, for c > 2, c2 − 4 > 0 and there are two equilibrium solutions again. The
bifurcation points are c = −2 and c = 2.

We note that f ′(x) = c + 2x and apply the Derivative Test to determine the nature of the

equilibrium solutions: When c < −2 or c > 2, f ′
(−c±√

c2−4
2

)
= c + 2

(−c±√
c2−4

2

)
=

±√
c2 − 4, so that the equilibrium solution with the positive square root is a source

and the equilibrium solution with the negative square root is a sink. If c = −2 or
2, you should check to see that you have a node. (The Derivative Test fails to show
this.)

(3)
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3. (1)

c 5 1/2 c 5 1 c 5 3/2

(2) f (x) = x − cx(1 − x) = x − cx + cx2 = x(1 − c + cx) = 0 ⇔ x = 0 or x = c−1
c . Note

that when c = 1, both equilibrium solutions blend into one. We use the Derivative
Test to determine the nature of each equilibrium solution: f ′(x) = 1 − c − 2cx, so
f ′(0) = 1 − c > 0 if c < 1 and x = 0 is a source; f ′(0) = 1 − c < 0 if c > 1, so x = 0 is
a sink. Now f ′( c−1

c

) = 1 − c − 2x
( c−1

c

) = 3(1 − c) > 0, so c−1
c is a source if c < 1 and

a sink if c > 1. Clearly c = 1 is the only bifurcation point.
(3)

4. (1)

c 5 1/2 c 5 1 c 5 3/2
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(2) f (x) = x2 − 2x + c = 0 ⇔ x = 2±√
4−4c
2 = 1 ± √

1 − c. Therefore, we have two
equilibrium points if c < 1, one equilibrium point if c = 1, and no equilibrium point
if c > 1. Furthermore, f ′(x) = 2x − 2, so that f ′(1 ± √

1 − c
) = 2

(
1 ± √

1 − c
) − 2 =

±2
√

1 − c. Thus, if c < 1, the equilibrium point with the positive square root is
a source, while the equilibrium solution with the negative square root is a sink. If
c = 1, then the equilibrium solution is x = 1, a node. Since the qualitative nature of
the solutions changes when c = 1, we see that c = 1 is the only bifurcation point.

(3)

5. (1)

c 521/2 c 5 0 c 5 3/2

(2) The bifurcation point is c = 0: If c = 0, there is only one equilibrium solution, x = 0,
which is a node. If c > 0, then x = 0 and x = c are equilibrium solutions, with 0 a sink
and c a source; and if c < 0, x = 0 and x = c are equilibrium solutions, with 0 a source
and c a sink.
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(3)

6. (1)

c ��1/2 c � 0 c � 3/2

(2) The bifurcation point is c = 0: If c = 0, there is only one equilibrium solution, x = 0,
which is a node. If c > 0, then x = 0 and x = c are equilibrium solutions, with 0 a
node and c a sink; and if c < 0, x = 0 and x = c are equilibrium solutions, with 0 a
sink and c a source.

(3)
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B

1. f (P) = P(5 − P) − h = 5P − P2 − h = 0 ⇔ P = −5±√
25−4h

−2 = 5∓√
25−4h
2 . The number

of equilibrium solutions depends on the discriminant, 25 − 4h. If 4h < 25—that is, if
h < 4/25—then there are two nonzero equilibrium solutions. If 4h = 25, then there is
only one equilibrium solution, P = 5/2. If 4h > 25, there is no equilibrium solution.
Clearly, h = 4/25 is a bifurcation point. If h ≤ 4/25, we can’t have extinction for every
initial population because of the nonzero equilibrium solutions, and so we investigate the
case h > 4/25 more carefully. If h > 4/25, the graph of dP/dt is an upside down parabola
which doesn’t intersect the P-axis. Therefore dP/dt < 0 for every solution P, so that
every solution—no matter what the initial point P(0)—must be decreasing as t increases,
eventually reaching zero. This says that h∗ = 25/4 is the maximum harvest rate beyond
which any population will become extinct.

2. We have x′ = α − e−x2
, α > 0, and f ′(x) = 2xe−x2

. Now x′ = α − e−x2 = 0 ⇔ α =
e−x2 ⇔ x = ±√− ln α, where ln α ≤ 0—that is, where 0 < α ≤ 1. If 0 < α < 1 , then

f ′
(
−√− ln α

)
= −2

√− ln αe
−
(
−√− ln α

)2

= −2α
√− ln α < 0, so x = −√− ln α is a sink.

On the other hand, f ′
(√− ln α

)
= 2

√− ln αe−(−√− ln α)2 = 2α
√− ln α > 0, so x =√− ln α is a source.

If α = 1 , then x = 0 is the only equilibrium solution. Finally, if α > 1 , there is no real
equilibrium solution. This analysis shows that α = 1 is the only bifurcation point. Based
upon this analysis, we can construct the bifurcation diagram.

3. We have f (x) = x(c − x2) and f ′(x) = c − 3x2. The equilibrium solutions are x = 0 and
x = ±√

c if c > 0. Then f ′(0) = c, so x = 0 is a sink if c > 0 and a source if c < 0. Also,
f ′(−√

c
) = c − 3

(−√
c
)2 = −2c < 0 (since here we must assume c > 0), so x = −√

c

is a sink. Furthermore, f ′(√c
) = c − 3

(√
c
)2 = −2c < 0, so

√
c is also a sink. If c = 0,

then dx/dt = −x3 and the only equilibrium solution is x = 0, which is a sink: dx/dt > 0
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if x < 0 and dx/dt < 0 if x > 0. Thus the bifurcation occurs at c = 0. The bifurcation
diagram follows.

4. We have f (x) = x(x2 − 1 − α), α ∈ R, and f ′(x) = 3x2 − 1 − α. Thus the equilibrium
solutions are x = 0 and x = ±√

α + 1 for α > −1. We see that f ′(0) = −(α + 1), so
x = 0 is a source if α < −1 and a sink if α > −1. If α = −1, then dx/dt = f (x) = x3, so
x = 0 is a source: dx/dt = x3 < 0 for x < 0 and dx/dt = x3 > 0 for x > 0. Furthermore,
f ′ (±√

α + 1
) = 3

(±√
α + 1

)2 − 1 − α = 2(α + 1) > 0 for α > −1, so x = ±√
α + 1 is a

source. Thus the bifurcation point (a pitchfork bifurcation) is α = −1. The diagram follows.

5. This exercise is tricky because f (x) = 3x − x3 − α and it’s difficult to determine the equi-
librium solutions algebraically. However, because we are interested in the bifurcation
diagram, we can bypass this part of the problem. Instead of solving the equation 3x −
x3 − α = 0 for x as a function of α, we can graph α = 3x − x3 (showing α as a function
of x) and then find the inverse of this graph, which represents x as a function of α. This
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inverse graph is just the graph of α = 3x − x3 reflected across the line α = x. Thus, given
the graphs of the cubic polynomial α = 3x − x3 and α = x

we get the bifurcation diagram by reflection:

There are two “saddle-node bifurcations, one at α = −2 and the other at α = 2. We can
also see that there is one equilibrium point for α < −2 and one for α > 2. For α between
−2 and 2, there are three equilibrium points.

C

1. a. ẋ = f (x) = (R − Rc)x − kx3 = 0 ⇔ x
[
(R − Rc) − kx2

] = 0 ⇔ x = 0 or x =
±√

(R − Rc)/k. If R < Rc, then R − Rc < 0, so that there is only one equilibrium
solution, x = 0. Since f ′(0) = (R − Rc) − 3k(0)2 = R − Rc < 0, we see that x = 0
is a sink.
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b. If R > Rc, then R − Rc > 0 and we have the three equilibrium solutions x = 0,
x = √

(R − Rc)/k, and x = −√
(R − Rc)/k. Then f ′(0) = (R − Rc) − 3k(0)2 =

R − Rc > 0, showing that x = 0 is a source. Also, f ′( ± √
(R − Rc)/k

) = (R − Rc) −
3k
(√

(R − Rc)/k
)2 = −2(R − Rc) < 0, so that

√
(R − Rc)/k and −√

(R − Rc)/k
are sinks.

c.

The bifurcation point R = Rc is a sink.
2. a. If α = 1, we have dx/dt = f (x) = 1 − x + 4x2/(1 + x2). Now the graph of f (x) shows

that there is only one equilibrium solution, x ≈ 4.84.

Furthermore, the graph shows that f (x) > 0 for x < 4.84 and f (x) < 0 for x > 4.84.
This information gives us the phase portrait

4.84
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b. Looking at graphs of f (x) with various values of α (and playing with the solve
command on a graphing calculator or CAS), we can estimate that a bifurcation occurs
when α = α0 = 0.063525 . . . ≈ 0.064.

These graphs suggest that when α > α0 there is only one equilibrium solution, a sink.
When α = α0, there are two distinct equilibrium solutions, one a node and one a
sink. Finally, when α < α0, there are three equilibrium solutions—a sink, a source,
and a sink, reading from left to right.

2.8 EXISTENCE AND UNIQUENESS OF SOLUTIONS
Usually I don’t cover the material on existence and uniqueness as extensively as indicated in
this section. The ideas are important, but fortunately (as indicated in Example 2.8.3) most
of the equations seen in basic science and engineering courses have unique solutions, given
appropriate initial conditions.

I believe that the particular existence and uniqueness theorem I give is the easiest to understand
and to use. Appendix A has a brief explanation of partial derivatives if necessary.

Exercise C6, although found in an old ODE text by Buck, is the kind of problem that a modern
differential equations course should pose. The student should be encouraged to think, rather
than just solve equations.

An interesting problem that I sometimes include in my class discussion is to show that the
IVP x′ = x2 + t, x(0) = 0, has no solution defined on the whole interval (0, 3). (Note that
the equation is neither separable nor linear. In fact, it has no solution in terms of elementary
functions.) The slope field for this equation seems to indicate that any solution curve defined
on the interval (0, 3) increases without bound. (This is the phenomenon that can be described
as “blowing up in finite time.”) The solution has the bonus of acquainting students with
proof by contradiction: Suppose that there is a solution x(t) of the IVP that is defined on the
entire interval (0, 3). Form the function z(t) = arctan x(t), 0 ≤ z(t) < π/2. Note that z(0) =
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arctan x(0) = arctan 0 = 0. Then the Chain Rule gives z′(t) = 1
1+[x(t)]2 · x′(t). In a way that

may be familiar to students from previous courses, construct a right triangle with one acute
angle equal to arctan x(t). Then tan z = tan(arctan x(t)) = x(t), cos z = cos(arctan x(t)) =

1√
x2+1

, cos2 z = 1
x2+1 , and cos−2 z = x2 +1. Thus

(
cos−2 z

)
z′ = x′(t) = x2 + t = tan2 z+ t, with

0 ≤ z(t) < π/2. Multiplying the last equation by cos2 z, we get z′ = cos2 z · sin2 z
cos2 z + t cos2 z =

sin2 z + t cos2 z = sin2 z + cos2 z + (t − 1) cos2 z = 1 + (t − 1) cos2 z ≥ 1 for t ≥ 1. Because
we have z(0) = 0 and z′ ≥ 1 for t ≥ 1, we see that z(t) ≥ t − 1. By the FTC and some
elementary integral comparisons, z(t) = ∫ t

0 z′(t)dt = ∫ 1
0 z′(t)dt+∫ t

1 z′(t)dt = z(1)+∫ t
1 z′(t)dt ≥∫ t

1 z′(t)dt ≥ ∫ t
1 1dt = t − 1.

Letting t = 2.9 in this last inequality, we conclude that z(2.9) ≥ 2.9−1 = 1.9, which is greater
than π/2 ≈ 1.5708—a contradiction of the fact that we assumed 0 ≤ z(t) < π/2. Therefore, a
solution x(t) can’t exist.

A

1. f (t, x) = 1
x and ∂f

∂x = − 1
x2 are not continuous where x = 0. So, for example, take any

rectangle centered at (0, 3) that avoids the t-axis (x = 0).
2. f (t, y) = 5

4 y1/5 and ∂f
∂y = 1

4 y−4/5, so that the partial derivative is not continuous when
y = 0. Therefore, the IVP has no unique solution through (t, y) = (0, 0). For example,
both y = t

5
4 and y = −t

5
4 are solutions passing through the origin.

3. f (t, x) = x
t and ∂f

∂x = 1
t are not continuous when t = 0—that is, at any point of the x-axis.

There is no rectangle R containing the origin that does not also include points of the
x-axis, where t = 0.

4. f (t, y) = − t
y and ∂f

∂y = t
y2 are continuous in any rectangle that does not include

y = 0. Because the initial point we are given is (0, 0.2), we can construct a rectangle
centered at (0, 0.2) such that its lower side intersects the y-axis at some value d > 0.
For example, consider the square with vertices (0.1, 0.1), (0.1, 0.3), (−0.1, 0.3), and
(−0.1, 0.1).

5. f (t, y) = t
1+t+y and ∂f

∂y = − t
(1+t+y)2 fail to be continuous at those points (t, y) for which

1 + t + y = 0—that is, at points on the straight line y = −t − 1. But the initial condition
specifies the point (−2, 1), which lies on this line; and any rectangle that includes (−2, 1)

also includes infinitely many points on the line y = −t − 1. Clearly, there is no rectangle
R satisfying the requirements of the Existence and Uniqueness Theorem.

6. f (x) = tan x = sin x
cos x and ∂f

∂x = f ′(x) = sec2 x = 1
cos2 x are not continuous where cos x = 0.

Unfortunately, x = π
2 is such a point, so that there is no rectangle guaranteeing us existence

and uniqueness.
7. We can write the equation in the form dy

dt = 1−y
1+t = f (t, y). Then ∂f

∂y = − 1
1+t . The rectangle

R can be any rectangle in the t-y plane that does not contain t = −1. For example, consider
the square with vertices (1.5, 1), (−0.5, 1), (−0.5, −1), and (1.5, −1).

8. f (x, y) = x+y
x−y and ∂f

∂y = 2x
(x−y)2 fail to be continuous at those points (t, y) for which y = x.

Thus R can be any rectangle that does not include points on the line y = x.
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9. This is a separable equation whose unique solution (using the initial condition) is y =
tan x. A look at the graph of this tangent function reveals that the function’s domain is
I = (−π/2, π/2), an interval of length π.

10. f (t, y) = t(1 + y) and ∂f
∂y = t are both continuous everywhere in the t-y plane. Therefore,

there is a rectangle R centered at (0, −1) such that the given IVP has a unique solu-
tion in R. But clearly y(t) ≡ −1 is a solution in the rectangle, and so must be the only
solution.

11. Separating the variables, we get x−2/3dx = dt, so that 3x1/3 = t + C, x1/3 = t/3 + K ,
and x(t) = (t/3 + K)3. The initial condition implies that K = x0, or K = 3

√
x0. Therefore,

the solution of the IVP is x(t) = ( t
3 + 3

√
x0
)3. Note that f (t, x) = x2/3 and ∂f

∂x = 2
3 3√x

, so

that the partial derivative is not continuous at x = 0. The initial condition of Example
2.8.2 is x(0) = 0, so that we don’t expect uniqueness in this case. In the current exercise,
both f and ∂f

∂x are continuous at (0, x0) if x0 < 0, so that we are guaranteed existence and
uniqueness on some t-interval I.

B

1. a. f (Q) = |Q − 1| is continuous everywhere, but ∂f
∂Q is not defined at Q = 1 (loosely,

because of the sharp point in the graph of f (Q) at 1). Therefore, the conditions of the
Existence and Uniqueness Theorem do not hold.

b. The constant function Q ≡ 1 is a solution because Q′ = 0 = |Q − 1| and Q(0) = 1.
This solution is in fact unique, showing that the Existence and Uniqueness Theorem
provides sufficient conditions that are not necessary.

c. Consider the two possibilities separately:
If Q(x) > 1, then Q′ = |Q − 1| becomes Q′ = Q − 1, with Q ≡ 1 if Q(0) = 1. If
Q(x) < 1, then Q′ = |Q − 1| becomes Q′ = 1 − Q, with Q ≡ 1 if Q(0) = 1.

2. a. We can write the equation as follows:

ẏ =
{√

y + k if y > 0
√−y + k if y < 0

Separating variables in each equation and making the appropriate substitution
u = √

y − k or u = √−y − k, we can integrate to find the implicit solution
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2
√

y − 2k ln
(√

y + k
) = t + C if y > 0 and 2

√|y| − 2k ln
(√|y| + k

) = t + C
if y < 0.

b. Because k > 0, there is a unique solution for any initial condition even though ∂f
∂y does

not exist at y = 0. As in Exercise B1, the point is that the Existence and Uniqueness
Theorem provides sufficient conditions that are not necessary. Note that y ≡ 0 is not a
solution of the equation.

c. If k < 0, the equation has a unique solution for any initial condition. When k = 0,
we have the solution given in part (a) as well as y ≡ 0, so that the IVP with initial
condition y(0) = 0 has no unique solution.

3. f (x, y) = 2x − 2
√

x2 − y and ∂f
∂y = 1√

x2−y
. The partial derivative is not continuous at

any point (x, y) on the parabola y = x2—in particular at the point (1, 1)—so that the
conditions of the Existence and Uniqueness Theorem are not satisfied and uniqueness is
not guaranteed.

4. a. f (x, y) = cos x − x2y3 and ∂f
∂y = −3x2y2 are continuous at every point of the x-y plane.

Therefore, given a point (x0, y0), the equation does have a unique solution passing
through (x0, y0).

b. Here’s how Maple handled the equation:

> with(DEtools):

> Eq:=diff(y(x),x)+xˆ2*(y(x))ˆ2=cos(x);

Eq :=
(

∂

∂x
y(x)

)
+ x2y(x)2 = cos(x)

> dsolve(Eq,y(x));

>

The last line indicates Maple’s response—a blank. This says that Maple could not come
up with a solution. The moral is that technology doesn’t have all the answers. We know
from part (a) that every IVP that involves this equation has a unique solution, but we
can’t seem to find it! However, the following commands (using a numerical method—see
Chapter 3—to calculate points on a solution curve) enable us to see some solution curves
corresponding to four different initial conditions:

> with(DEtools):

> DEplot(diff(y(x),x)+xˆ2*(y(x))ˆ3=cos(x),y(x),

x=-3..5,{[0,2],[0,-2],[-1,1],[0,0]},

y=-4..4,stepsize=.01,linecolor=black);
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C

1. Here f (x, y) = P(x)y2 + Q(x)y and ∂f
∂y = 2P(x)y + Q(x). Because P and Q are polynomials

(continuous everywhere), f and ∂f
∂y are also continuous everywhere in the x-y plane. The

conditions of the Existence and Uniqueness Theorem are satisfied, and so we expect to
find an interval I = (2 − h, 2 + h) centered at x = 2 such that the IVP has a unique
solution on I.

2. f (x) = (α − x)(β − x) and ∂f
∂x = f ′(x) = 2x − (α + β) are continuous at every point (t, x),

so that if we are given any initial point (t0, x0), we can find a unique solution passing
through (t0, x0).

3. f (P) = kP(b − P) and ∂f
∂P = kb − 2kP are continuous at every point (t, P), so that any IVP

involving the logistic equation has a unique solution. If a solution near P ≡ b were to
equal the equilibrium solution—that is, if another solution curve intersects the horizontal
line P ≡ b at the point (t∗, b)—then we would have two solutions of the IVP dP

dt = kP(b−P),
P(t∗) = b.

4. Every point at which two curves intersect is a point of nonuniqueness, contradicting the
Existence and Uniqueness Theorem which should apply when f is a polynomial function.
(See the solution to Exercise C3 for a similar argument.)

5. We are given the IVP y′ = y, y(0) = 1, which has a unique solution.

a. Consider Y(t) = y(t)y(−t). Then Y ′(t) = y(t)[−y′(−t)] + y′(t)y(−t) = −y(t)y′(−t) +
y′(t)y(−t) = −y(t)y(−t)+y(t)y(−t) = 0, which implies that Y(t) is a constant function.
Since Y(0) = y(0)y(0) = 1, we see that the constant must be 1—that is, Y(t) =
y(t)y(−t) = 1 for all values of t.

b. By part (a), y(t) can never be zero. We are given that y(0) is positive. If y(t∗) were
negative for some t∗, by the Intermediate Value Theorem y(t̂) would be zero for some
t̂ between 0 and t∗, which cannot happen. Thus y(t) > 0 for all values of t.

c. Let t2 be an arbitrary fixed real number and consider the function Q(t) = y(t+t2)

y(t) . Notice

that Q(0) = y(t2). Then Q′(T) = y(t)y′(t+t2)−y(t+t2)y′(t)
[y(t)]2 , which equals zero because y′ = y.

Therefore Q is constant, so it is equal to y(t2) for all values of t.

6. If the equation does not have a solution, this may indicate that the reaction cannot take
place. However, our confidence in this conclusion must be proportional to our belief
that the differential equation provides an accurate description of our experiment. If the
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reaction does take place, we should conclude that the differential equation model is not
accurate. On the other hand, if the equation has a solution, this does not guarantee that
the reaction does take place, because the model may not be an accurate description of
physical reality. For example, in Chapter 4 we’ll see a model of a spring-mass system that
predicts the mass will never stop bobbing up and down, which certainly is not an accurate
description of reality.
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