Chapter 2

Getting to Know Your Data

2.1 Exercises

1. Give three additional commonly used statistical measures (i.e., not illustrated in this chapter) for the
characterization of data dispersion, and discuss how they can be computed efficiently in large databases.

Answer:

Data dispersion, also known as variance analysis, is the degree to which numeric data tend to spread
and can be characterized by such statistical measures as mean deviation, measures of skewness and
the coefficient of variation.

The mean deviation is defined as the arithmetic mean of the absolute deviations from the means
and is calculated as:

Z;L:l |z —

- (2.1)

mean deviation =

where, T is the arithmetic mean of the values and n is the total number of values. This value will be
greater for distributions with a larger spread.

A common measure of skewness is:
T — mode
_— (2.2)
s

which indicates how far (in standard deviations, s) the mean (Z) is from the mode and whether it is
greater or less than the mode.

The coefficient of variation is the standard deviation expressed as a percentage of the arithmetic
mean and is calculated as:

coefficient of variation = i x 100 (2.3)
z

The variability in groups of observations with widely differing means can be compared using this
measure.

Note that all of the input values used to calculate these three statistical measures are algebraic measures
(Chapter 4). Thus, the value for the entire database can be efficiently calculated by partitioning the
database, computing the values for each of the separate partitions, and then merging theses values into
an algebraic equation that can be used to calculate the value for the entire database.
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The measures of dispersion described here were obtained from: Statistical Methods in Research and
Production, fourth ed., Edited by Owen L. Davies and Peter L. Goldsmith, Hafner Publishing Company,
NY:NY, 1972. =

. Suppose that the data for analysis includes the attribute age. The age values for the data tuples are

(in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36,
40, 45, 46, 52, 70.

What is the mean of the data? What is the median?

What is the mode of the data? Comment on the data’s modality (i.e., bimodal, trimodal, etc.).
What is the midrange of the data?

Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

Give the five-number summary of the data.

Show a boxplot of the data.

How is a quantile-quantile plot different from a quantile plot?

Answer:

(a)

(b)

What is the mean of the data? What is the median?

The (arithmetic) mean of the data is: z = 1 3" | 2; = 809/27 = 30. The median (middle value
of the ordered set, as the number of values in the set is odd) of the data is: 25.

What is the mode of the data? Comment on the data’s modality (i.e., bimodal, trimodal, etc.).
This data set has two values that occur with the same highest frequency and is, therefore, bimodal.
The modes (values occurring with the greatest frequency) of the data are 25 and 35.

What is the midrange of the data?

The midrange (average of the largest and smallest values in the data set) of the data is: (70 +
13)/2 =41.5

Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

The first quartile (corresponding to the 25th percentile) of the data is: 20. The third quartile
(corresponding to the 75th percentile) of the data is: 35.

Give the five-number summary of the data.

The five number summary of a distribution consists of the minimum value, first quartile, median
value, third quartile, and maximum value. It provides a good summary of the shape of the
distribution and for this data is: 13, 20, 25, 35, 70.

Show a bozxplot of the data.

See Figure 2.1.

How is a quantile-quantile plot different from a quantile plot?

A quantile plot is a graphical method used to show the approximate percentage of values below
or equal to the independent variable in a univariate distribution. Thus, it displays quantile
information for all the data, where the values measured for the independent variable are plotted
against their corresponding quantile.

A quantile-quantile plot however, graphs the quantiles of one univariate distribution against the
corresponding quantiles of another univariate distribution. Both axes display the range of values
measured for their corresponding distribution, and points are plotted that correspond to the
quantile values of the two distributions. A line (y = z) can be added to the graph along with
points representing where the first, second and third quantiles lie, in order to increase the graph’s
informational value. Points that lie above such a line indicate a correspondingly higher value for
the distribution plotted on the y-axis, than for the distribution plotted on the x-axis at the same
quantile. The opposite effect is true for points lying below this line.
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Values

Figure 2.1: A boxplot of the data in Exercise 2.2.
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3. Suppose that the values for a given set of data are grouped into intervals. The intervals and corre-
sponding frequencies are as follows.

age frequency
1-5 200
6-15 450
1620 300
21-50 1500
51-80 700
81-110 44

Compute an approzimate median value for the data.

Answer:

Ly =20, n= 3194, (3_;)1 = 950, freg-median = 1500, width = 30, median = 30.94 years. =

4. Suppose a hospital tested the age and body fat data for 18 randomly selected adults with the following

result
age 23 23 27 27 39 41 47 49 50
%fat 9.5 26.5 7.8 17.8 | 31.4 | 25.9 | 27.4 | 27.2 | 31.2
age 52 54 54 56 57 58 58 60 61
%fat | 34.6 | 42.5 | 28.8 | 33.4 | 30.2 | 34.1 | 32.9 | 41.2 | 35.7

(a) Calculate the mean, median and standard deviation of age and Z%fat.
(b) Draw the boxplots for age and %fat.

(¢) Draw a scatter plot and a g-q plot based on these two variables.

Answer:

(a) Calculate the mean, median and standard deviation of age and %fat.

For the variable age the mean is 46.44, the median is 51, and the standard deviation is 12.85. For

the variable %fat the mean is 28.78, the median is 30.7, and the standard deviation is 8.99.
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(b) Draw the boxplots for age and %fat.
See Figure 2.2.
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Figure 2.2: A boxplot of the variables age and %fat in Exercise 2.4.

(c) Draw a scatter plot and a ¢-q plot based on these two variables.
See Figure 2.3.
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Figure 2.3: A ¢-q plot and a scatter plot of the variables age and %fat in Exercise 2.4.

L]
5. Briefly outline how to compute the dissimilarity between objects described by the following;:

a) Nominal attributes

(a)
(b)
(c)

)

(d) Term-frequency vectors

Asymmetric binary attributes

Numeric attributes
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Answer:

(a)

Nominal attributes

A categorical variable is a generalization of the binary variable in that it can take on more than

two states.

The dissimilarity between two objects ¢ and j can be computed based on the ratio of mismatches:
p—m

d(i,j) = P (2.4)

where m is the number of matches (i.e., the number of variables for which 7 and j are in the same
state), and p is the total number of variables.

Alternatively, we can use a large number of binary variables by creating a new binary variable
for each of the M nominal states. For an object with a given state value, the binary variable
representing that state is set to 1, while the remaining binary variables are set to 0.
Asymmetric binary attributes

If all binary variables have the same weight, we have the contingency Table 2.1.

object j
1 0 sum
1 q r q+r
object ¢ 0 s t s+t
sum || g+s | r+t D

Table 2.1: A contingency table for binary variables.

In computing the dissimilarity between asymmetric binary variables, the number of negative
matches, ¢, is considered unimportant and thus is ignored in the computation, that is,
r+s
d(i,j) = ————. 2.5
(5) = o (25)
Numeric attributes

Use Euclidean distance, Manhattan distance, or supremum distance. Euclidean distance
is defined as

d(i,j) = \/(CEil —21)2 + (i —xj2)2 + - + (Tin — T4n) 2. (2.6)

where i = (z1, Ti2, . . ., Tin), and j = (zj1,2j2,...,%,), are two n-dimensional data objects.
The Manhattan (or city block) distance, is defined as

d(i,j) = |z — zj1| + [Ti2 — Tjo| + - + |Tin — Tjnl- (2.7)
The supremum distance is

h

P
. . p
d(i, j) :hlirgo Z|xif—xjf|h :mjz}x|xif—xjf|. (2.8)
=1

Term-frequency vectors

To measure the distance between complex objects represented by vectors, it is often easier to
abandon traditional metric distance computation and introduce a nonmetric similarity function.
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For example, the similarity between two vectors, & and y, can be defined as a cosine measure, as

follows:
(@,y) = 2 Y 29)
s(eyy) = 77—t .
’ || []]y]]
where ! is a transposition of vector x, ||z|| is the Euclidean norm of vector x,! ||y|| is the

Euclidean norm of vector y, and s is essentially the cosine of the angle between vectors  and y.
[
6. Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):
(a)
(b)
()
)

(d) Compute the supremum distance between the two objects.

Compute the Fuclidean distance between the two objects.
Compute the Manhattan distance between the two objects.

Compute the Minkowski distance between the two objects, using h = 3.

Answer:

(a) Compute the Fuclidean distance between the two objects.

The Euclidean distance is computed using Equation (2.6).

Therefore, we have /(22 —20)2 + (1 — 0)2 + (42 — 36)2 + (10 — 8)2 = /45 = 6.7082.
(b) Compute the Manhattan distance between the two objects.

The Manhattan distance is computed using Equation (2.7). Therefore, we have |22 — 20| + |1 —
0] + |42 — 36| + |10 — 8 = 11.

(¢) Compute the Minkowski distance between the two objects, using h = 3.
The Minkowski disance is

d(i, j) = ’\l/|$i1 =z M A T — 2ol + -+ |z — xp|" (2.10)

where h is a real number such that h > 1.
Therefore, with h = 3, we have /|22 — 203 + |1 — 03 + [42 — 36]3 + |10 — 8|3 = V/233 = 6.1534.

(d) Compute the supremum distance between the two objects.

The supremum distance is computed using Equation (2.8). Therefore, we have a supremum
distance of 6.

7. The median is one of the most important holistic measures in data analysis. Propose several methods
for median approximation. Analyze their respective complexity under different parameter settings and
decide to what extent the real value can be approximated. Moreover, suggest a heuristic strategy to
balance between accuracy and complexity and then apply it to all methods you have given.

Answer:

This question can be dealt with either theoretically or empirically, but doing some experiments to get
the result is perhaps more interesting.

We can give students some data sets sampled from different distributions, e.g., uniform, Gaussian (both
two are symmetric) and exponential, gamma (both two are skewed). For example, if we use Equation

1The Euclidean normal of vector @ = (1,2, ...,2n) is defined as 1/1% + x% + ...+ z2. Conceptually, it is the length of

the vector.
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(2.11) to do approximation as proposed in the chapter, the most straightforward way is to divide all
data into k equal length intervals.

N/2— (3 freq)
f{’ne%nedian
where L is the lower boundary of the median interval, N is the number of values in the entire data set,

(3 freq); is the sum of the frequencies of all of the intervals that are lower than the median interval,
fregmedian is the frequency of the median interval, and width is the width of the median interval.

median = Ly + (

Jwidth, (2.11)

Obviously, the error incurred will be decreased as k becomes larger and larger; however, the time used
in the whole procedure will also increase. Let’s analyze this kind of relationship more formally. It
seems the product of error made and time used is a good optimality measure. From this point, we can
do many tests for each type of distributions (so that the result won’t be dominated by randomness)
and find the k giving the best trade-off. In practice, this parameter value can be chosen to improve
system performance.

There are also some other approaches to approximate the median, students can propose them, analyze
the best trade-off point, and compare the results among different approaches. A possible way is as
following: Hierarchically divide the whole data set into intervals: at first, divide it into k regions,
find the region in which the median resides; then secondly, divide this particular region into k sub-
regions, find the sub-region in which the median resides; .... We will iteratively doing this, until the
width of the sub-region reaches a predefined threshold, and then the median approximation formula as
above stated is applied. By doing this, we can confine the median to a smaller area without globally
partitioning all data into shorter intervals, which is expensive (the cost is proportional to the number
of intervals).

n
8. It is important to define or select similarity measures in data analysis. However, there is no commonly-

accepted subjective similarity measure. Results can vary depending on the similarity measures used.
Nonetheless, seemingly different similarity measures may be equivalent after some transformation.

Suppose we have the following two-dimensional data set:

Ay | Ay
1 | 15| 1.7
zz | 2 | 1.9
x3 | 1.6 | 1.8
s | 12| 15
x5 | 1.5 | 1.0

(a) Consider the data as two-dimensional data points. Given a new data point, * = (1.4,1.6) as a
query, rank the database points based on similarity with the query using FEuclidean distance,
Manhattan distance, supremum distance, and cosine similarity.

(b) Normalize the data set to make the norm of each data point equal to 1. Use Euclidean distance
on the transformed data to rank the data points.

Answer:

(a) Use Equation (2.6) to compute the Euclidean distance, Equation (2.7) to compute the Manhattan
distance, Equation (2.8) to compute the supremum distance, and Equation (2.9) to compute the
cosine similarity between the input data point and each of the data points in the data set. Doing
so yields the following table
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Euclidean dist. | Manhattan dist. | supremum dist. | cosine sim.
T 0.1414 0.2 0.1 0.99999
T 0.6708 0.9 0.6 0.99575
T3 0.2828 0.4 0.2 0.99997
T4 0.2236 0.3 0.2 0.99903
s 0.6083 0.7 0.6 0.96536

These values produce the following rankings of the data points based on similarity:
Euclidean distance: x1, x4, 23,5, T2
Manhattan distance: x1, x4, 3, x5, T2
Supremum distance: x1, x4, T3, T5, T2
Cosine similarity: =1, z3, T4, 22, T5
(b) The normalized query is (0.65850, 0.75258). The normalized data set is given by the following
table

Ay Ag

xy | 0.66162 | 0.74984
x2 | 0.72500 | 0.68875
x3 | 0.66436 | 0.74741
x4 | 0.62470 | 0.78087
x5 | 0.83205 | 0.55470

Recomputing the Euclidean distances as before yields

Euclidean dist.
T 0.00415
To 0.09217
T3 0.00781
x4 0.04409
Ts 0.26320

which results in the final ranking of the transformed data points: z1,x3, 24, 2, x5

2.2 Supplementary Exercises

1. Briefly outline how to compute the dissimilarity between objects described by ratio-scaled variables.
Answer:
Three methods include:
e Treat ratio-scaled variables as interval-scaled variables, so that the Minkowski, Manhattan, or
Euclidean distance can be used to compute the dissimilarity.

e Apply a logarithmic transformation to a ratio-scaled variable f having value x;¢ for object i by
using the formula y;; = log(z;¢). The y;; values can be treated as interval-valued,

e Treat x;; as continuous ordinal data, and treat their ranks as interval-scaled variables.



