CHAPTER 2

2.1 Show that for an electromagnetic wave traveling through a dielectric (m; = 1), impinging on the interface
with another, optically less dense dielectric (1, < n1), light of any polarization is totally reflected for incidence
angles larger than 6, = sin~! (12 /my).

Hint: Use equations (2.105) with k, = 0.

Solution
Equations (2.105) become for k, = 0,

no 11 sin 01 = wj sin O,,
Wi -y = i,
w, w;’ cos Py = 0.
The last of these relations dictates that either w;" = 0 or cos 6> = 0 (w; = 0 is not possible since—from the first
relation—this would imply g 111 sin 61 = 0 which is known not to be true).
w;’ = 0: Substituting this into the second relation leads to w; = 19 115, and the first leads to n; sin 0; = 1, sin 0,.
Since n; > 1, this is a legitimate solution only for sin 61 < (112/n1), or 61 < 6, = sin~! (12 /m1).
cos 6, = 0 (02 = 1/2): Substituting the first relation into the second gives

" o_ 2 2.2 2
w, =1 w’”l sin” 6y — n3,

i.e., alegitimate nonzero solution for n% sin? 0, —ng > 0or 0 > 0.. Inspection of the reflection coefficients,
equations (2.109), shows that

_indw] +njw, cos6r _  w)] cosO +iw)
r” =7 7 1= B
in§ w;’ —nyw, cos O w! cos Oy — iw}

Since, in both reflection coefficients, there are no sign changes within the real and imaginary parts, it
follows readily that

T F RSy J _1
pr=nr=pL=r0r, =1
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2.2 Derive equations (2.109) using the same approach as in the development of equations (2.89) through (2.92).

Hint: Remember that within the absorbing medium, w = w’ — iw” = w’§ — iw’'f; this implies that Ey is not a
vector normal to §. It is best to assume Ey = E| & + E &, + ES.

Solution
Inside the absorbing medium w; = w; —iw}’ = w;§; — iw;'fi, and the electric field vector does not lie in a plane
normal to §. Thus, we assume a general three-dimensional representation, or

Ey = E”é” +E,é, +ES.
Following the development for nonabsorbing media, equations (2.77) through (2.88), then leads to
V[JH() =wXxEjy = (w’é - iw”ﬁ) X (E”é” +E, & + Esé).

This formulation is valid for the transmitted wave, but also for the incident wave (wl’. ’ = 0) and reflected wave
(w; =0, wy = —w)). The contribution from E; vanishes for incident and reflected wave. Using the same
vector relations as given for the nonabsorbing media interface, one obtains

vuHo = w'(Ejé, — E, &) —iw” (Ejé. cos 0 — E, t + E;é, sin O).
For the interface condition (with vu the same everywhere)
vuHo x i = w'(Ejt + E &, cos 0) — iw” (Ecos Ot + E, &, + E; sin Ot).
Thus, from equation (2.78)

w/(Eyt + E;i @, cos 01) — w/(Eyt + E, &, cos 6)
= w](Eyt + E¢ &, cos 05) — iw] (Ey cos Ozt + E; &, + Ejs sin Ot)
or
w;(Ei” - Ey'”) = (w; - 1w;’ cos 92) Et” - zw;’ sin 92Ets (ZZ-A)
wi(Eir —E,;1)cos 01 = (wjcos O —iw;') Esy (2.2-B)
Similarly, from equation (2.77),
Eyxf = (EHé” +E, &, +E5§)Xﬁ= _EHéJ_COSG"'EJ_i_EséJ_SinG

and

(E,‘“ + Er”) CcOSs 91 = Et\l COSs 92 + Ets sin 92 (22-C)
Ei +E = Ey (2.2-D)

These four equations have 5 unknowns (E,, Es, Ey, E:1, and E), and an additional condition is needed,
e.g., equation (2.23) or equation (2.64). Choosing equation (2.23) we obtain, inside the absorbing medium,

W'EOZO

(w;é - 1w;’ﬁ) . (Et”ét” + EtJ_éJ_ + Etsé)
w;Egs + iw;’ (Ey sin O, — Eys cos 07). (2.2-E)

Eliminating E;, from equations (2.2-B) and (2.2-D), with 7, = E,, /E;,, gives
wi(1 =7.) cos 01 = (w} cos O — iy )(1 +7L),

or

w; cos b1 — (w; cos O, — iwy’)

1= :
w! cos 0 + (w} cos O, — iw;')’

which is identical to equation (2.109).



CHAPTER 2 21

Now, eliminating Ejs from equations (2.2-A) and (2.2-C) [multiplying equation (2.2-C) by iw;" and adding]:
w;(Ei” - Er”) + zw;’ cos Ql(Ei“ + Er”) = w;Et”. (2.2-F)
Eliminating E;; from equations (2.2-C) and (2.2-E) leads to

. .
_ —lwt Et” sim 92
ts — =, - 7 A
* T w) —iw]’ cos 0>
iw! sin” 0, w; cos O — iwy’
(EiH + Er”) Ccos 61 = EtH Ccos 62 - — = Et”
w; — iw;’ cos 6,

w), — iw}’ cos O

Using this to eliminate E; from equation (2.2-F), with 7| = E,/E;, gives

{1 =T + iw cos 011 +T) = ) cos 011 ~)w; — iw}’ cos 0
wi(1 —7) + iw}’ cos +7)) = w; cos +N)
i I t 1 I t 1 I w; oS 62 _ 1w;'
w!(w] cos 0 — iw;")(1 —7y)

= [wi(w] — iw] cos B7) — iw}’ (w] cos O, — iw;]")] cos O1(1 + 7))

= r]g m% cos 01(1 + 7)),

’ ’ Y 2 .2
7o wi(wt cos 0 —iw;") — 175 M3 cos 0y
(! ) 2 .2 4
wi(wy cos Oy — iw}’) + g m5 cos 61

which is the same as equation (2.109).

It is a simple matter to show that other conditions give the same result. For example, from equation (2.64)

20 A . f A LAY — 2 A a 2. A
ny(Eq@ - i+ Eqéy - i) = m5(Eyéy - fi + Exs8 - i)

or
n%(EiH —E,) sinf; = m%(EtH sin 0, — Eys cos 6,), etc.
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2.3 Find the normal spectral reflectivity at the interface between two absorbing media. [Hint: Use an approach

similar to the one thatled to equations (2.89) and (2.90), keeping in mind that all wave vectors will be complex,
but that the wave will be homogeneous in both media, i.e., all components of the wave vectors are colinear
with the surface normal].

Solution

Equations (2.19) and (2.20) remain valid for incident, reflected and transmitted waves, with w = w’ —iw” =
(w’—iw”) fi for all three cases. From equation (2.31) w-w = (w’—iw”)*A-A = njm? it follows thatw’ —iw"” = o m.
Thus

’

w, —iw; = nomy,

w;, —iw, = —nom; (reflected wave is moving in a direction of — i),

w; - zw;’ = 1o ma.
From equations (2.23) and (2.24), it follows that the electric and magnetic field vectors are normal to 4, i.e.,
tangential to the surface, say Ey = Eot. Then, from equation (2.77)

(Ei+E)txA=Etxn,
or
Ei+E, =E;
From equation (2.25) vuHy = w X By = (v’ — iw”’) Efi X t, and from equation (2.78)
m(E; — E;) = my E;.

Substituting for E; and dividing by E;, with7 = E,/E;:

mi(1=7) = my(1+7)

or
my —my

mq + mp

and

o (my — mp)(my — my)* _ (11 — np) +i(ky — ka) |*
P (i + ma)(my +ma)” | (1 + 1) + ik + kz)

_(m - )% + (ky — ko)?
(1 +n2)? + (ky + kp)?

n
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2.4 A circularly polarized wave in air is incident upon a smooth dielectric surface (n = 1.5) with a direction of
45° off normal. What are the normalized Stokes” parameters before and after the reflection, and what are the
degrees of polarization?

Solution
From the definition of Stokes’ parameters the incident wave has degrees of polarization

%:E:O, E=il,
L I I;

the sign giving the handedness of the circular polarization. With E, = Eyr and E,, = E;,r,, from equa-
tions (2.50) through (2.53):

. . . 1
I, = EyEjri + Ei Ej 72 = EyEj(py + pu) = So1+pu) i

Since Ei“E;‘H = E; E;, [from equation (2.51)] and p = .
Similarly,
Q: = EqEjrj — EiEj, 1l = EgE;(p) = p1)
U, = EjE; nyro + EuE:HT'LrII =Umnre =0
= i(EgEj, —EiEp)ryre = Viryry
Q _pi—pr Ve 2y Vi

I pi+p. L opi+pL L

, sin 6 sin? 6 / 0.5 7
sin 0, = n21;c0562= 1- nzlz 1_ﬁ:\/;’
\/ 2 )

and from equations (2.89) and (2.90)

=
|

From Snell’s law

1108 0y —npcos 67 V7/9 -1.5v1/2 _

o= = = —-0.0920, p; = 0.0085
17 J1cos 6, +nycos 6, V7/9 +1.5+/1/2 P
rL o= ncosO; —npcos6,  V1/2-15v7/9 0.3033, p, = 0.0920

n1cos01 +ncos02  T/2+15v7/9

Q, _ 0.0085—0.0920 _ u,
I, ~ 00085+ 00920 8 =0

Ve _ [ 2x00920x0.0085

7, = 70.0085 + 0.0920

Since the perpendicular polarization is much more strongly reflected, the resulting wave is no longer circularly
polarized, but to a large degree linearly polarized (in the perpendicular direction).
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2.5 A circularly polarized wave in air traveling along the z-axis is incident upon a dielectric surface (n = 1.5).
How must the dielectric-air interface be oriented so that the reflected wave is a linearly polarized wave in the

y-z-plane?

Solution

From equations (2.50) through (2.53) it follows that
Q,/I, =1, U, = V, = 0 (i.e, linear polarization), if
either E, or E,; vanish. From Fig. 2-9 it follows that
r. # 0 and, therefore E,; # 0 for all incidence di-
rections, while 7y = 0 for 6 = 0, (Brewster’s angle),
or

0, = tan”! % =tan"! 1.5 = 56.31°.
1

The resulting wave is purely perpendicular-
polarized, i.e.,, &, must lie in the y—2z plane, or
&) must be in the x—z plane. Therefore, the surface
may be expressed in terms of its surface normal as

fi = isin 0, - kcos 0, = (1 - 1.5k)/ V3.25.
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2.6 A polished platinum surface is coated with a 1 um thick layer of MgO.

(a) Determine the material’s reflectivity in the vicinity of A = 2 ym (for platinum at 2 ym mp; = 5.29 — 6.711,
for MgO myg0 = 1.65 — 0.0001 7).

(b) Estimate the thickness of MgO required to reduce the average reflectivity in the vicinity of 2 um to 0.4.
What happens to the interference effects for this case?

Solution
(a) The desired overall reflectivity must be calculated from equation (2.124) after determining the relevant
reflection coefficient. From equation (2.122)

— 1—m2~1—n2_1—1.65_

~ = =-0.24
1+my, 14+n, 1+4+1.65 0.2453

since k; < 1, and rqp = 0.2453. 7p3 may also be calculated from equation (2.122) or, more conveniently, from
equation (2.126):

,  (1.65-529 + 6712
_ — 0.6253 or 123 = 0.7908.
"3 (165 + 5,297 + 6.712 orr

Since the real part of 71, < 0 it follows that 612 = 7, while

2(1.65%6.71 — 5.29x107%)

= —0.3150.
1.652 + 108 — (5.292+6.712)

tan 623 =

Since the J(r23) > 0 (numerator) and R(rx3) < 0 (denominator) d,3 lies in the second quadrant, 71/2 < 63 < 7,
or Oy3 = 2.8364. Also (1 = 41t X 1.65 X 1 ym/2 ym = 10.3673, and

cos [012 + (023 — C12)] = cos [t + (2.8364 — 10.3673)] = —0.3175.
Also xod = 4t x 107* X 1 um/2 um = 2t X 107* and 7 = ¢7% = 0.9994 =~ 1. Thus

_ 0.2453% + 2x0.2453%0.7908 X (—0.3175) + 0.79082
1+ 2x0.2453%0.7908 % (—0.3175) + 0.24532x0.79082

(b) The cos in the numerator fluctuates between —1 < cos < +1. The average value for R is obtained by
dropping the cos-term. Then

R = 1 15T
U1+ 7%21%3’[2’
or ,
R v — T 4 — U 2
2 = ' a 122 _ 0 42 0.2453 = 0.5782,
2(—1)  0.7908(1 - 0.2453?)

d=-Lingoo Lo 05782
K T 2 47 x 1074 um-!

=43.6 ym.

More accurate is the averaged expression, equation (2.129)

(1-pro)?
Rav =pi2t Pi3 P12 >
— P12P237T

or

’ Rav = p12 _ Rav — p12
P23 [(Ray — p12)p12 + (1 — p12)?]  p2s [l — (2 — Ray)p12]
0.4 — 0.2453?2

= = 0.6013
0.79082[1 — 1.6 x 0.24537]
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and

—In0.6013

= Ix 10 pmt A

For such a large d, it follows that {; =~ 40x10.3673 = 450. A full interference period is traversed if , =~ 450 + 7.
Around A = 2 um this implies a full period is traversed between 2 um + 0.014 um. Such interference effects
will rarely be observed because (i) the detector will not respond to such small wavelength changes, and (ii)
the slightest inaccuracies in layer thickness will eliminate the interference effects.

Note: since incoming radiation at g = 2 ym has a wavelength of A = Ag/n; = 2/1.65 = 1.2. um, mp; should
really be evaluated at 1.21 ym.




