
CHAPTER 2
2.1 Show that for an electromagnetic wave traveling through a dielectric (m1 = n1), impinging on the interface

with another, optically less dense dielectric (n2 < n1), light of any polarization is totally reflected for incidence
angles larger than θc = sin−1(n2/n1).
Hint: Use equations (2.105) with k2 = 0.

Solution
Equations (2.105) become for k2 = 0,

η0 n1 sinθ1 = w′t sinθ2,

w′2t − w′′2t = η2
0 n2

2,

w′t w′′t cosθ2 = 0.

The last of these relations dictates that either w′′t = 0 or cosθ2 = 0 (w′t = 0 is not possible since—from the first
relation—this would imply η0 n1 sinθ1 = 0 which is known not to be true).

w′′t = 0: Substituting this into the second relation leads to w′t = η0 n2, and the first leads to n1 sinθ1 = n2 sinθ2.

Since n1 > n2 this is a legitimate solution only for sinθ1 ≤ (n2/n1), or θ1 ≤ θc = sin−1(n2/n1).
cosθ2 = 0 (θ2 = π/2): Substituting the first relation into the second gives

w′′t = η0

√
n2

1 sin2 θ1 − n2
2,

i.e., a legitimate nonzero solution for n2
1 sin2 θ1−n2

2 ≥ 0 orθ1 ≥ θc. Inspection of the reflection coefficients,
equations (2.109), shows that

r̃‖ =
in2

1 w′′t + n2
2 w′i cosθ1

in2
1 w′′t − n2

2 w′i cosθ1
, r̃⊥ =

w′i cosθ1 + iw′′t
w′i cosθ1 − iw′′t

Since, in both reflection coefficients, there are no sign changes within the real and imaginary parts, it
follows readily that

ρ‖ = r̃‖̃r∗‖ = ρ⊥ = r̃⊥r̃∗⊥ = 1.
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20 RADIATIVE HEAT TRANSFER

2.2 Derive equations (2.109) using the same approach as in the development of equations (2.89) through (2.92).
Hint: Remember that within the absorbing medium, w = w′ − iw′′ = w′ŝ − iw′′n̂; this implies that E0 is not a
vector normal to ŝ. It is best to assume E0 = E‖ê‖ + E⊥ê⊥ + Esŝ.

Solution
Inside the absorbing medium wt = w′t − iw′′t = w′t ŝt − iw′′t n̂, and the electric field vector does not lie in a plane
normal to ŝ. Thus, we assume a general three-dimensional representation, or

E0 = E‖ê‖ + E⊥ê⊥ + Esŝ.

Following the development for nonabsorbing media, equations (2.77) through (2.88), then leads to

νµH0 = w × E0 = (w′ŝ − iw′′n̂) × (E‖ê‖ + E⊥ê⊥ + Esŝ).

This formulation is valid for the transmitted wave, but also for the incident wave (w′′i = 0) and reflected wave
(w′′r = 0, w′r = −w′i ). The contribution from Es vanishes for incident and reflected wave. Using the same
vector relations as given for the nonabsorbing media interface, one obtains

νµH0 = w′(E‖ê⊥ − E⊥ê‖) − iw′′ (E‖ê⊥ cosθ − E⊥ t̂ + Esê⊥ sinθ).

For the interface condition (with νµ the same everywhere)

νµH0 × n̂ = w′(E‖ t̂ + E⊥ê⊥ cosθ) − iw′′ (E‖ cosθt̂ + E⊥ê⊥ + Es sinθt̂).

Thus, from equation (2.78)

w′i (Ei‖ t̂ + Ei⊥ê⊥ cosθ1) − w′i (Er‖ t̂ + Er⊥ê⊥ cosθ1)
= w′t(Et‖ t̂ + Et⊥ê⊥ cosθ2) − iw′′t (Et‖ cosθ2 t̂ + Et⊥ê⊥ + Ets sinθ2 t̂)

or

w′i (Ei‖ − Er‖) = (w′t − iw′′t cosθ2) Et‖ − iw′′t sinθ2Ets (2.2-A)
w′i (Ei⊥ − Er⊥) cosθ1 = (w′t cosθ2 − iw′′t ) Et⊥ (2.2-B)

Similarly, from equation (2.77),

E0 × n̂ = (E‖ê‖ + E⊥ê⊥ + Esŝ) × n̂ = −E‖ê⊥ cosθ + E⊥ t̂ − Esê⊥ sinθ

and

(Ei‖ + Er‖) cosθ1 = Et‖ cosθ2 + Ets sinθ2 (2.2-C)
Ei⊥ + Er⊥ = Et⊥ (2.2-D)

These four equations have 5 unknowns (Er‖, Ers, Et‖, Et⊥, and Ets), and an additional condition is needed,
e.g., equation (2.23) or equation (2.64). Choosing equation (2.23) we obtain, inside the absorbing medium,

w · E0 = 0 = (w′t ŝ − iw′′t n̂) · (Et‖êt‖ + Et⊥ê⊥ + Etsŝ)
= w′tEts + iw′′t (Et‖ sinθ2 − Ets cosθ2). (2.2-E)

Eliminating Et⊥ from equations (2.2-B) and (2.2-D), with r̃⊥ = Er⊥/Ei⊥, gives

w′i (1 − r̃⊥) cosθ1 = (w′t cosθ2 − iw′′t )(1 + r̃⊥),

or

r̃⊥ =
w′i cosθ1 − (w′t cosθ2 − iw′′t )

w′i cosθ1 + (w′t cosθ2 − iw′′t )
,

which is identical to equation (2.109).
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Now, eliminating Ets from equations (2.2-A) and (2.2-C) [multiplying equation (2.2-C) by iw′′t and adding]:

w′i (Ei‖ − Er‖) + iw′′t cosθ1(Ei‖ + Er‖) = w′tEt‖. (2.2-F)

Eliminating Ets from equations (2.2-C) and (2.2-E) leads to

Ets =
−iw′′t Et‖ sinθ2

w′t − iw′′t cosθ2

(Ei‖ + Er‖) cosθ1 = Et‖

cosθ2 −
iw′′t sin2 θ2

w′t − iw′′t cosθ2

 = Et‖
w′t cosθ2 − iw′′t
w′t − iw′′t cosθ2

.

Using this to eliminate Et‖ from equation (2.2-F), with r̃‖ = Er‖/Ei‖, gives

w′i (1 − r̃‖) + iw′′t cosθ1(1 + r̃‖) = w′t cosθ1(1 + r̃‖)
w′t − iw′′t cosθ2

w′t cosθ2 − iw′′t
w′i (w

′

t cosθ2 − iw′′t )(1 − r̃‖)
=

[
w′t(w

′

t − iw′′t cosθ2) − iw′′t (w′t cosθ2 − iw′′t )
]

cosθ1(1 + r̃‖)
= η2

0 m2
2 cosθ1(1 + r̃‖),

r̃‖ =
w′i (w

′

t cosθ2 − iw′′t ) − η2
0 m2

2 cosθ1

w′i (w
′

t cosθ2 − iw′′t ) + η2
0 m2

2 cosθ1
,

which is the same as equation (2.109).

It is a simple matter to show that other conditions give the same result. For example, from equation (2.64)

n2
1(Ei‖êi‖ · n̂ + Er‖êr‖ · n̂) = m2

2(Et‖êt‖ · n̂ + Etsŝ · n̂)
or

n2
1(Ei‖ − Er‖) sinθ1 = m2

2(Et‖ sinθ2 − Ets cosθ2), etc.
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2.3 Find the normal spectral reflectivity at the interface between two absorbing media. [Hint: Use an approach
similar to the one that led to equations (2.89) and (2.90), keeping in mind that all wave vectors will be complex,
but that the wave will be homogeneous in both media, i.e., all components of the wave vectors are colinear
with the surface normal].

Solution
Equations (2.19) and (2.20) remain valid for incident, reflected and transmitted waves, with w = w′ − iw′′ =
(w′−iw′′) n̂ for all three cases. From equation (2.31) w·w = (w′−iw′′)2n̂·n̂ = η2

0m2 it follows that w′−iw′′ = ±η0 m.
Thus

w′i − iw′′i = η0 m1,

w′r − iw′′r = −η0 m1 (reflected wave is moving in a direction of − n̂),
w′t − iw′′t = η0 m2.

From equations (2.23) and (2.24), it follows that the electric and magnetic field vectors are normal to n̂, i.e.,
tangential to the surface, say E0 = E0 t̂. Then, from equation (2.77)

(Ei + Er) t̂ × n̂ = Et t̂ × n̂,
or

Ei + Er = Et

From equation (2.25) νµH0 = w × E0 = (w′ − iw′′) E n̂ × t̂, and from equation (2.78)

n1(Ei − Er) = m2 Et.

Substituting for Et and dividing by Ei, with r̃ = Er/Ei:

m1(1 − r̃) = m2(1 + r̃)
or

r̃ =
m1 −m2

m1 + m2

and

ρn = r̃̃r∗ =
(m1 −m2)(m1 −m2)∗

(m1 + m2)(m1 + m2)∗
=

∣∣∣∣∣ (n1 − n2) + i(k1 − k2)
(n1 + n2) + i(k1 + k2)

∣∣∣∣∣2

ρn =
(n1 − n2)2 + (k1 − k2)2

(n1 + n2)2 + (k1 + k2)2
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2.4 A circularly polarized wave in air is incident upon a smooth dielectric surface (n = 1.5) with a direction of
45◦ off normal. What are the normalized Stokes’ parameters before and after the reflection, and what are the
degrees of polarization?

Solution
From the definition of Stokes’ parameters the incident wave has degrees of polarization

Qi

Ii
=

Ui

Ii
= 0,

Vi

Ii
= ±1,

the sign giving the handedness of the circular polarization. With Er‖ = Ei‖r‖ and Er⊥ = Ei⊥r⊥, from equa-
tions (2.50) through (2.53):

Ir = Ei‖E∗i‖r
2
‖

+ Ei⊥E∗i⊥r2
⊥ = Ei‖E∗i‖(ρ‖ + ρ⊥) =

1
2

(ρ‖ + ρ⊥) Ii

Since Ei‖E∗i‖ = Ei⊥E∗i⊥ [from equation (2.51)] and ρ = r2.

Similarly,

Qr = Ei‖E∗i‖r
2
‖
− Ei⊥E∗i⊥r2

⊥ = Ei‖E∗i‖(ρ‖ − ρ⊥)
Ur = Ei‖E∗i⊥r‖r⊥ + Ei⊥E∗i‖r⊥r‖ = Uir‖r⊥ = 0
Vr = i(Ei‖E∗i⊥ − Ei⊥E∗i‖) r‖r⊥ = Vir‖r⊥
Qr

Ir
=
ρ‖ − ρ⊥
ρ‖ + ρ⊥

,
Vr

Ir
=

2r‖r⊥
ρ‖ + ρ⊥

Vi

Ii
.

From Snell’s law

sinθ2 =
sinθ1

n2
; cosθ2 =

√
1 −

sin2 θ1

n2
2

=

√
1 −

0.5
1.52 =

√
7
9
,

and from equations (2.89) and (2.90)

r‖ =
n1 cosθ2 − n2 cosθ1

n1 cosθ2 + n2 cosθ1
=

√
7/9 − 1.5

√
1/2

√
7/9 + 1.5

√
1/2

= −0.0920, ρ‖ = 0.0085

r⊥ =
n1 cosθ1 − n2 cosθ2

n1 cosθ1 + n2 cosθ2
=

√
1/2 − 1.5

√
7/9

√
1/2 + 1.5

√
7/9

= −0.3033, ρ⊥ = 0.0920

Qr

Ir
=

0.0085 − 0.0920
0.0085 + 0.0920

= −0.8315,
Ur

Ir
= 0

Vr

Ir
= ±

2×0.0920×0.0085
0.0085 + 0.0920

= ±0.5556

Since the perpendicular polarization is much more strongly reflected, the resulting wave is no longer circularly
polarized, but to a large degree linearly polarized (in the perpendicular direction).
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2.5 A circularly polarized wave in air traveling along the z-axis is incident upon a dielectric surface (n = 1.5).
How must the dielectric-air interface be oriented so that the reflected wave is a linearly polarized wave in the
y-z-plane?

Solution
From equations (2.50) through (2.53) it follows that
Qr/Ir = 1, Ur = Vr = 0 (i.e., linear polarization), if
either Er‖ or Er⊥ vanish. From Fig. 2-9 it follows that
r⊥ , 0 and, therefore Er⊥ , 0 for all incidence di-
rections, while r‖ = 0 for θ = θp (Brewster’s angle),
or

θp = tan−1 n2

n1
= tan−1 1.5 = 56.31◦.

The resulting wave is purely perpendicular-
polarized, i.e., ê⊥ must lie in the y− z plane, or
ê‖ must be in the x−z plane. Therefore, the surface
may be expressed in terms of its surface normal as
n̂ = ı̂ sinθp − k̂ cosθp = (ı̂ − 1.5k̂)

/√
3.25.

Ei

Er

p

p

n

x
z
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2.6 A polished platinum surface is coated with a 1µm thick layer of MgO.

(a) Determine the material’s reflectivity in the vicinity of λ = 2µm (for platinum at 2µm mPt = 5.29 − 6.71 i,
for MgO mMgO = 1.65 − 0.0001 i).

(b) Estimate the thickness of MgO required to reduce the average reflectivity in the vicinity of 2µm to 0.4.
What happens to the interference effects for this case?

Solution
(a) The desired overall reflectivity must be calculated from equation (2.124) after determining the relevant
reflection coefficient. From equation (2.122)

r̃12 =
1 −m2

1 + m2
'

1 − n2

1 + n2
=

1 − 1.65
1 + 1.65

= −0.2453

since k2 � 1, and r12 = 0.2453. r̃23 may also be calculated from equation (2.122) or, more conveniently, from
equation (2.126):

r2
23 =

(1.65 − 5.29)2 + 6.712

(1.65 + 5.29)2 + 6.712 = 0.6253 or r23 = 0.7908.

Since the real part of r̃12 < 0 it follows that δ12 = π, while

tan δ23 =
2(1.65×6.71 − 5.29×10−4)

1.652 + 10−8 − (5.292+6.712)
= −0.3150.

Since the =(r23) > 0 (numerator) and<(r23) < 0 (denominator) δ23 lies in the second quadrant, π/2 < δ23 < π,
or δ23 = 2.8364. Also ζ12 = 4π × 1.65 × 1µm/2µm = 10.3673, and

cos [δ12 ± (δ23 − ζ12)] = cos [π ± (2.8364 − 10.3673)] = −0.3175.

Also κ2d = 4π × 10−4
× 1µm/2µm = 2π × 10−4 and τ = e−κ2d = 0.9994 ' 1. Thus

R =
0.24532 + 2×0.2453×0.7908×(−0.3175) + 0.79082

1 + 2×0.2453×0.7908×(−0.3175) + 0.24532×0.79082

R = 0.6149.

(b) The cos in the numerator fluctuates between −1 < cos < +1. The average value for R is obtained by
dropping the cos-term. Then

Rav =
r2

12 + r2
23τ

2

1 + r2
12r2

23τ
2
,

or

τ2 =
Rav − r2

12

r2
23(1 − r2

12)
=

0.4 − 0.24532

0.79082(1 − 0.24532)
= 0.5782,

d = −
1
κ2

ln τ = −
1

2κ2
ln τ2 =

− ln 0.5782
4π × 10−4 µm−1 = 43.6µm.

More accurate is the averaged expression, equation (2.129)

Rav = ρ12 +
ρ23(1 − ρ12)2τ2

1 − ρ12ρ23τ2

or

τ2 =
Rav − ρ12

ρ23
[
(Rav − ρ12)ρ12 + (1 − ρ12)2] =

Rav − ρ12

ρ23
[
1 − (2 − Rav)ρ12

]
=

0.4 − 0.24532

0.79082[1 − 1.6 × 0.24532]
= 0.6013
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and

d =
− ln 0.6013

4π × 10−4 µm−1 = 40.47µm

For such a large d, it follows that ζ2 ' 40×10.3673 ' 450. A full interference period is traversed if ζ2 ' 450±π.
Around λ = 2µm this implies a full period is traversed between 2µm ± 0.014µm. Such interference effects
will rarely be observed because (i) the detector will not respond to such small wavelength changes, and (ii)
the slightest inaccuracies in layer thickness will eliminate the interference effects.

Note: since incoming radiation at λ0 = 2µm has a wavelength of λ = λ0/n1 = 2/1.65 = 1.2. µm, mPt should
really be evaluated at 1.21µm.


