Solutions




Chapter 2 Solutions

2.1 addi x5, x7,-5
add x5, x5, x6
[addi f,h,-5 (note, no subi) add f,f,q]

2.2 f = g+h+i
2.3 sub x30, x28, x29 // compute i-]
sT1i x30, x30, 3 // multiply by 8 to convert the
word offset to a byte offset
1d x30, 0(x3) // Toad A[1-j]
sd x30, 64(x11) // store in B[8]

2.4 B[gl= A[f] + ALf+1]

s111 x30, x5, 3 /] x30 = f*8

add x30, x10, x30 // x30 = &A[f]

s111 x31, x6, 3 // x31 = g*8

add x31, x11, x31 // x31 = &B[g]

1d x5, 0(x30) /] f = ALf]

addi x12, x30, 8 /] x12 = &A[LFI1+8 (i.e. &A[f+11)
1d x30, 0(x12) // x30 = A[f+1]

add x30, x30, xb // x30 = A[f+1] + A[f]

sd x30, 0(x31) // BL[gl = x30 (i.e. A[f+1] + ALf])

2.5

Little-Endian Big-Endian
“Address | Data | Addross | Data |
ab 1 12

12 2
8 cd 8 ef
4 ef 4 cd
0 12 0 ab

2.6 2882400018
2.7 sl1li x28, x28, 3 /] x28 = i*8

1d x28, 0(x10) /] x28 = A[i]
s11i x29, x29, 3 /] x29 = j*8
1d x29, 0(x11) /] x29 = BLJ]

add x29, x28, x29 // Compute x29 = A[i] + B[J]
sd x29, 64(x11) // Store result in B[8]



S-4

Chapter 2 Solutions

2.8 f =

2% (&A)

addi x30, x10, 8 // x30 = &A[1]

addi  x31, x10, O // x31

sd
1d

&A
x31, 0(x30) // ALL] =
x30, 0(x30) // x30 = A[1] =

add x5, x30, x31 /] f = &A + &A = 2% (&A)

opcode,
funct3,7

addi x30,x10,8 I-type 0x13, 0x0, - 8
addi x31,x10,0 R-type 0x13, 0x0, - 10 - 31 0
sd x31,0(x30) S-type 0x23, 0x3, -- 31 30 - 0
1d x30,0(x30) I-type 0x3, 0x3, - 30 - 30 0
add x5, x30, x31 R-type 0x33, 0x0, 0x0 30 31 5 -
2.10

2.10.1 0x5000000000000000

2.10.2 overflow

2.10.3 0xB000000000000000

2.10.4 no overflow

2.10.5 0xD000000000000000

2.10.6 overflow

211

2.11.1 There is an overflow if 128 + x6 > 2% — 1.

2.11.2

2.11.3

In other words, if x6 > 2% — 129.

There is also an overflow if 128 + x6 < —2%,

In other words, if x6 < —2% — 128 (which is impossible given the
range of x6).

There is an overflow if 128 — x6 > 2% — 1.

In other words, if x6 < —2% + 129.

There is also an overflow if 128 — x6 < —2%.

In other words, if x6 > 2% + 128 (which is impossible given the
range of x6).

There is an overflow if x6 — 128 > 2% — 1.

In other words, if x6 < 2% + 127 (which is impossible given the
range of x6).

There is also an overflow if x6 — 128 < —2%,

In other words, if x6 < —2% + 128.

2.12 R-type: add x1, x1, x1



Chapter 2 Solutions S5

2.13 S-type: 0x25F3023 (0000 0010 0101 1111 0011 0000 0010
0011)

2.14 R-type: sub x6, x7, xb (0x40538333: 0100 0000 0101 0011
1000 0011 0011 0011)

2.15 I-type: 1d x3, 4(x27) (0x4DB183: 0000 0000 0100 1101
1011 0001 1000 0011)

2.16
2.16.1 The opcode would expand from 7 bits to 9.

The rs1, rs2,and rd fields would increase from 5 bits to 7 bits.
2.16.2 The opcode would expand from 7 bits to 12.

The rs1 and rd fields would increase from 5 bits to 7 bits. This change
does not affect the imm field per se, but it might force the ISA designer to
consider shortening the immediate field to avoid an increase in overall
instruction size.

2.16.3 * Increasing the size of each bit field potentially makes each instruction
longer, potentially increasing the code size overall.

* However, increasing the number of registers could lead to less register
spillage, which would reduce the total number of instructions, possibly
reducing the code size overall.

2.17

2.17.1 0x1234567ababefef8
2.17.2 0x2345678123456780
2.17.3 0x545

2.18 It can be done in eight RISC-V instructions:

addi x7, x0, O0x3f // Create bit mask for bits 16 to 11

s11i x7, x7, 11 // Shift the masked bits

and x28, xb, x7 // Apply the mask to x5

s11i x7, x6, 15 // Shift the mask to cover bits 31
to 26

xori x7, x7, -1 // This is a NOT operation

and x6, x6, x7 // “Zero out” positions 31 to
26 of x6

s11i x28, x28, 15 // Move selection from x5 into
positions 31 to 26

or x6, x6, x28 // Load bits 31 to 26 from x28

2.19 xori xb, x6, -1



Chapter 2 Solutions

2.20 1d x6, 0(x17)
s11i x6, x6, 4

2.21 x6 = 2
2.22
2.22.1 [0x1ff00000, Ox200FFFFE]
2.22.2 [0x1FFFF000, 0x20000ffe]
2.23
2.23.1 The UJ instruction format would be most appropriate because it would
allow the maximum number of bits possible for the “Toop” parameter,
thereby maximizing the utility of the instruction.
2.23.2 It can be done in three instructions:
loop:
addi  x29, x29, -1 // Subtract 1 from x29
bgt x29, x0, loop // Continue if x29 not
negative
addi  x29, x29, 1 // Add back 1 that shouldn’t
have been subtracted.
2.24
2.24.1 The final value of xs is 20.
2.24.2 acc = 0;
i=10;
while (i ! = 0) {
acc += 2;
i--;
}
2.24.3 4*N + 1 instructions.
2.24.4 (Note: change condition ! = to > = in the while loop)

acc = 0;

i=10;

while (i >= 0) {
acc += 2;
iy



Chapter 2 Solutions S-7

2.25

The C code can be implemented in RISC-V assembly as follows.

LOOPI:

addi  x7, x0, 0O // Init 1 =0
bge X7, x5, ENDI // While i < a
addi x30, x10, O // x30 = &D

addi x29, x0, 0 // Init j =20

LOOPJ:

ENDJ:

ENDI:

2.26

2.27

bge  x29, x6, ENDJ // While j < b

add  x31, x7, x29 // x31 = i+]

sd x31, 0(x30) // D[4*j]1 = x31

addi x30, x30, 32 // x30 = &D[4*(j+1)]
addi  x29, x29, 1 /] j+t

jal x0, LOOPJ

addi x7, x7, 1 /] i+t
jal x0, LOOPI

The code requires 13 RISC-V instructions. When a = 10 and b = 1, this
results in 123 instructions being executed.

// This C code corresponds most directly to the given
assembly.
int i;
for (i = 0; 1 < 100; i++) {
result += *MemArray;
MemArray++;

J

return result;

// However, many people would write the code this way:
int 1;
for (i = 0; 1 < 100; i++) {
result += MemArrayl[i]l;
}

return result;



S-8

Chapter 2 Solutions

2.28 The address of the Tlast element of MemArray can be
used to terminate the Tloop:

/1

// x29 = &MemArray[101]

Loop until MemArray points
to one-past the Tast element

// IMPORTANT! Stack pointer must reamin a multiple

add x29, x10, 800
LOOP:
1d x7, 0(x10)
add x5, x5, x7
addi x10, x10, 8
b1t  x10, x29, LOOP
2.29
of 16!!!!
fib:
beq x10, x0, done
addi x5, x0, 1
beq x10, xb, done
addi  x2, x2, -16
sd x1, 0(x2)
sd x10, 8(x2)
addi  x10, x10, -1
jal x1, fib
1d x5, 8(x2)
sd x10, 8(x2)
addi  x10, x5, -2
jal x1, fib
1d x5, 8(x2)
add x10, x10, x5
// Clean up:
1d x1, 0(x2)
addi X2, x2, 16
done:
jalr  x0, x1

2.30 [answers will vary]

/!

/!
/!

/!
/!
/!
/!
/!
/!
/!
/!
/!
/!

/!
/!

If n==0, return 0

If n==1, return 1
Allocate 2 words of stack
space

Save the return address
Save the current n

x10 = n-1

fib(n-1)

Load old n from the stack
Push fib(n-1) onto the stack
x10 = n-2

Call fib(n-2)

x5 = fib(n-1)

x10 = fib(n-1)+fib(n-2)

Load saved return address
Pop two words from the stack



Chapter 2 Solutions

S-9

2.31

2.32

2.33

// IMPORTANT! Stack pointer must remain a multiple of 16!!!
f:
addi x2, x2, -16 // Allocate stack space for 2 words

sd x1, 0(x2) // Save return address

add x5, x12, x13 // x5 = c+d

sd x5, 8(x2) // Save c+d on the stack

jal  x1, g // Call x10 = g(a,b)

1d x11, 8(x2) // Reload x11= c+d from the stack
jal  x1, g // Call x10 = g(g(a,b), c+d)

1d x1, 0(x2) // Restore return address

addi x2, x2, 16 // Restore stack pointer
jalr x0, x1

We can use the tail-call optimization for the second call to g, saving one
instruction:

// IMPORTANT! Stack pointer must remain a multiple of 16!!!
f:
addi  x2, x2, -16 // Allocate stack space for 2 words

sd x1, 0(x2) // Save return address

add xb, x12, x13 // x5 = c+d

sd x5, 8(x2) // Save c+d on the stack

jal x1, g // Call x10 = g(a,b)

1d x11, 8(x2) // Reload x11 = c+d from the stack
1d x1, 0(x2) // Restore return address

addi  x2, x2, 16 // Restore stack pointer

jal x0, g // Call x10 = g(g(a,b), c+d)

*We have no idea what the contents of x10-x14 are, g can set them as it
g
pleases.

*We don’t know what the precise contents of x8 and sp are; but we do know
that they are identical to the contents when f was called.

*Similarly, we don’t know what the precise contents of x1 are; but, we do
know that it is equal to the return address set by the “jal x1, f”instruction
that invoked f.



S-10 Chapter 2 Solutions

2.34
a_to_i:
addi x28, x0, 10 # Just stores the constant 10
addi x29, x0, 0 # Stores the running total
addi x5, x0, 1 # Tracks whether input is positive

or negative
# Test for initial ‘+° or “-~°

Tbu x6, 0(x10) # Load the first character
addi x7, x0, 45 # ASCIT “-~
bne x6, X7, noneg
addi x5, x0, -1 # Set that input was negative
addi x10, x10, 1 # str++
jal x0, main_atoi_loop
noneg:
addi x7, x0, 43 J# ASCII “+°
bne X6, x7, main_atoi_loop
addi x10, x10, 1 # str++
main_atoi_Tloop:
Tbu x6, 0(x10) # Load the next digit
beq x6, x0, done J# Make sure next char is a digit,
or fail
addi x7, x0, 48 ## ASCIT “0°

sub X6, X6, X7
b1t x6, x0, fail # *str < 07
bge X6, x28, fail # *str >= ‘9’

J# Next char is a digit, so accumulate it into x29

mul x29, x29, x28 # x29 *= 10
add x29, x29, x6 # x29 += *str - ‘0’

addi x10, x10, 1 # str++
jal x0, main_atoi_loop
done:
addi  x10, x29, 0 # Use x29 as output value
mul x10, x10, xb # Multiply by sign
jalr x0, x1 # Return result
fail:

addi x10, x0, -1
jalr x0, x1

2.35

2.35.1 0x11

2.35.2 0x88



Chapter 2 Solutions

S-11

2.36 Tui x10, 0x11223
addi x10, x10, 0x344
s11i x10, x10, 32
Tui x5, 0x55667
addi x5, x5, 0x788
add x10, x10, xb

2.37

setmax:
try:
Tr.d x5, (x10) # Load-reserve *shvar
bge x5, x11, release # Skip update if *shvar > x
addi x5, x11, 0

release:
sc.d x7, x5, (x10)
bne x7, x0, try # If store-conditional failed,

try again
jalr x0, x1

2.38 When two processors A and B begin executing this loop at the same time, at
most one of them will execute the store-conditional instruction successfully,
while the other will be forced to retry the loop. If processor A’s store-conditional
successds initially, then B will re-enter the try block, and it will see the new
value of shvar written by A when it finally succeeds. The hardware guarantees
that both processors will eventually execute the code completely.

2.39

2.39.1 No. The resulting machine would be slower overall.
Current CPU requires (num arithmetic * 1 cycle) + (num load/store * 10
cycles) + (num branch/jump * 3 cycles) = 500*1 + 300*10 + 100*3 = 3800
cycles.
The new CPU requires (.75*num arithmetic * 1 cycle) + (num load/store
* 10 cycles) + (num branch/jump * 3 cycles) = 375%1 + 300*10 + 100*3
= 3675 cycles.
However, given that each of the new CPU’s cycles is 10% longer than the
original CPU’s cycles, the new CPU’s 3675 cycles will take as long as 4042.5
cycles on the original CPU.

2.39.2 If we double the performance of arithmetic instructions by reducing their
CPI to 0.5, then the the CPU will run the reference program in (500*.5) +
(300*10) + 100*3 = 3550 cycles. This represents a speedup of 1.07.

If we improve the performance of arithmetic instructions by a factor of
10 (reducing their CPI to 0.1), then the the CPU will run the reference
program in (500%.1) 4+ (300*10) + 100*3 = 3350 cycles. This represents a
speedup of 1.13.



$-12

Chapter 2 Solutions

2.40
2.40.1 Take the weighted average: 0.7*2 + 0.1%6 + 0.2*3 = 2.6

2.40.2 For a 25% improvement, we must reduce the CPU to 2.6*.75 = 1.95. Thus,
we want 0.7*x + 0.1*6 + 0.2*3 < = 1.95. Solving for x shows that the
arithmetic instructions must have a CPI of at most 1.07.

2.40.3 For a 50% improvement, we must reduce the CPU to 2.6*.5 = 1.3. Thus, we
want 0.7*x + 0.1¥6 + 0.2*3 < = 1.3. Solving for x shows that the arithmetic
instructions must have a CPI of at most 0.14

2.41
1dr x28, x5(x10), 3 // Load x28=A[f]
addi x5, xb, 1 /] f++
1dr x29, x5(x10), 3 // Load x29=A[f+1]
add x29, x29, x28 // Add x29 = A[f] + A[f+1]
sdr x12, x6(x11), 3 // Store B[g] = x29

2.42 1dr x28, x28, (x10), 3 // Load x28=A[1]
1dr x29, x29, (x11), 3 // Load x29=B[j]
add x29, x28, x29
sd x29, 64(x11) // Store B[8]=x29 (don’t
need scaled store here)






