Data Structures and Problem
Solving with C++
Second Edition
Instructors Resource Manual

Mark Allen Weiss

Florida International University

Addison-Wesley Publishing Company, Inc.
Menlo Park, California « Reading, Massachusetts « New York « Don Mills, Ontario
Wokingham, U.K. « Amsterdam « Bonn ¢ Paris ¢ Milan « Madrid « Sydney
Singapore * Tokyo * Seoul * Tapei « Mexico City » San Juan, Puerto Rico

Chapter 1

11

12
13

Pointers, Arrays, and Structures 1

Key Concepts and How To Teath Them 1

111
112
113
114
115
116

Arrays 1

Strings 1

Pointers 2

Dynamic Allocaion 2

Reference Variables and Parameter Passing Mechanisms 2
Structures 2

Solutions To Exercises 3
Exam Questions 4

Chapter 2

21

22
2.3

Objects and Classes 7

Key Concepts and How To Teath Them 7

211
212
213
214

215
216
217
218
219
2.1.10
2111
2112

Thecl ass Construct 7

Public and Private Sedions 8

Interfacevs. Implementation 8

Constructors, Destructors, Copy Constructor, and Copy A ssignment
operator= 8

const Member Functions 9

t hi s Pointer 9

Operator Overloading 9

Type Conversions 10

I/O (Friends), and More on Binary Operators 10

stati ¢ ClassMembers 10

enum and Constant Class Members 10

stringClass 10

Solutions To Exercises 11
Exam Questions 13

Chapter 3

31

32
33

Templates 19

Key Concepts and How To Tead Them 19

311
312
313
314
315
3.16

The Concept of aTemplate 19
Function Templates 19

Class Templates 20

vect or Class 20

Fancy Stuff 20

Bugs 20

Solutions To Exercises 21
Exam Questions 22

Chapter 4

Inheritance 25

41 Key Conceptsand How To Tead Them 25

411
412
413
414

415
4.1.6

The Concept of Inheritance and Polymorphism 25

Public, Private, and Proteded Members and Inheritance 26

Static vs. Dynamic Binding 26

Default Constructor, Copy Constructor, and Copy Assignment Op-
erator 26

Abstrad Classes 27

Tricky Details 27

4.2 Solutions To Exercises 27
43 Exam Questions 28

Chapter 5

Design Patterns 31

5.1 Key Conceptsand How To Tead Them 31

511

Must-Tead Patterns 31

5.2 Solutions To Exercises 31
5.3 Exam Questions 32

Chapter 6

Algorithm Analysis 33

6.1 Key Conceptsand How To Tead Them 33

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

What is Algorithm Analysis 33

Some Examples 33

The Maximum Contiguous Subsequence Sum Problem 33
Official Big-oh Rules 34

Logarithms 34

6.2 Solutions To Exercises 34
6.3 Exam Questions 37

Chapter 7

The Standard Template Library 43

7.1 Key Conceptsand How To Tead Them 43
7.2 Solutions To Exercises 44
7.3 Exam Questions 46

Chapter 8

Recursion 49

8.1 Key Conceptsand How To Tead Them 49

811
812
813

What is Reaursion? 49
Proof by Induction 49
Basic Reaursion 50

8.1.4 Numericd Applicdions 50

8.1.5 Divide and Conquer 50

8.1.6 Dynamic Programming and Badtradking 50
8.2 Solutions To Exercises 51
8.3 Exam Questions 54

Chapter 9 Sorting 59

9.1 Key Conceptsand How To Tead Them 59
9.1.1 Motivation for Sorting 59
9.1.2 Insertion Sort Analysis 60
9.1.3 Shellsort 60
9.1.4 Mergesort 60
9.1.5 Quicksort 60
9.1.6 Seledion 60
9.1.7 Lower Bound for Sorting 60
9.1.8 Indired sorting 61

9.2 Solutions To Exercises 61

9.3 Exam Questions 64

Chapter 10 Randomization 67

10.1 Key Conceptsand How To Teath Them 67
10.1.1 Linea Congruential Generators 67
10.1.2 Permutation Generation 67
10.1.3 Randomized Algorithms 68

10.2 Solutions To Exercises 68

10.3 Exam Questions 69

Chapter 11 Fun and Games 71

11.1 Key Conceptsand How To Teathh Them 71
11.1.1 Word Seach Puzzle 71
11.1.2 Tic-tactoe 71

11.2 Solutions To Exercises 72

11.3 Exam Questions 73

Chapter 12 Stacks and Compilers 75

12.1 Key Conceptsand How To Teathh Them 75
12.1.1 Balanced Symbol Chedker 75
12.1.2 Infix to Postfix Conversion 75

12.2 Solutions To Exercises 76
12.3 Exam Questions 79

Chapter 13 Utilities 81

13.1 Key Conceptsand How To Teath Them 81
13.1.1 Huffman's Algorithm 81
13.1.2 Crossreference Generator 81

13.2 Solutions To Exercises 82

13.3 Exam Questions 83

Chapter 14 Simulation 85

14.1 Key Conceptsand How To Teath Them 85
14.1.1 Josephus Problem 85
14.1.2 Discrete-event Simulation 85

14.2 Solutions To Exercises 86

14.3 Exam Questions 87

Chapter 15 Graphs and Paths 89

15.1 Key Conceptsand How To Teath Them 89
15.1.1 Definitions and Implementation 89
15.1.2 Unweighted Shortest Paths 90
15.1.3 Positive Weighted Shortest Paths 90
15.1.4 Negative Weighted Shortest Paths 90
15.1.5 Acyclic Graphs 90

15.2 Solutions To Exercises 91

15.3 Exam Questions 93

Chapter 16 Stacks and Queues 97

16.1 Key Conceptsand How To Teath Them 97
16.1.1 Array-based Stadk 97
16.1.2 Array-based Queue 97
16.1.3 Linked list-based Stadk 97
16.1.4 Linked list-based Queue 98
16.1.5 Double-ended Queue 98
16.2 Solutions To Exercises 98
16.3 Exam Questions 100

vii

Chapter 17 Linked Lists 103

17.1 Key Conceptsand How To Teath Them 103
17.1.1 Basic Ideas: Header Nodes and Iterator Classes 103
17.1.2 Implementation Details 103
17.1.3 Doubly Linked Listsand Circular Linked Lists 104
17.1.4 Sorted Linked Lists 104
17.1.5 TheSTL | i St Implementation 104

17.2 Solutions To Exercises 104

17.3 Exam Questions 106

Chapter 18 Trees 109

18.1 Key Conceptsand How To Teathh Them 109
18.1.1 General Treesand Reaursion 109
18.1.2 Binary Treesand Reaursion 109
18.1.3 TreeTraversal 110

18.2 Solutions To Exercises 110

18.3 Exam Questions 113

Chapter 19 Binary Search Trees 117

19.1 Key Conceptsand How To Teathh Them 117
19.1.1 TheBasic Binary Seach Tree 117
19.1.2 Order Statistics 118
19.1.3 AVL Trees, Red-Bladk Trees, and AA-trees 118
19.14 STL set andnap 118
19.1.5 B-trees 118
19.2 Solutions To Exercises 118
19.3 Exam Questions 123

Chapter 20 Hash Tables 127

20.1 Key Conceptsand How To Tead Them 127
20.1.1 Basicldess 127
20.1.2 Hash Function 127
20.1.3 Linea Probing 127
20.1.4 Quadratic Probing 128
20.1.5 Other Implementations 128
20.2 Solutions To Exercises 128
20.3 Exam Questions 131

viii

Chapter 21 A Priority Queue: The Binary Heap

211 Key Conceptsand How To Tead Them 135
21.1.1 Binary Heg and Hegsort 135

21.2 Solutions To Exercises 136

21.3 Exam Questions 139

Chapter 22 Splay Trees 143

221 Key Conceptsand How To Tead Them 143
22.2 Solutions To Exercises 143

22.3 Exam Questions 144

Chapter 23 Merging Priority Queues 147
23.1 Key Conceptsand How To Teadh Them 147
23.2 Solutions To Exercises 147

23.3 Exam Questions 149

Chapter 24 The Disjoint Set Class 151

241 Key Conceptsand How To Tead Them 151
242 Solutions To Exercises 151
24.3 Exam Questions 154

APPENDIX 157

Appendix A Sample Syllabi 159

Appendix B Sample Assignments 163

135

Preface

This Instructor’s Resource Manud provides additional material for instructors to
use in conjunction with Data Sructures, and Problem Sdving with C++, second
edition.

Each chapter in the text has a corresponding chapter in this manual that con-
sists of:

« A section onthe important concepts and how to teach them

» Solutionsto many of the In Short and In Theory questions, aswell as sme
comments for some of the In Practice questions

* Multiple choice questions

| have d@tempted to avoid redundancy. As aresult, common errors, which are
aredy listed in the text for ead chapter, are not repeaed. Y ou shoud be sureto
review these errors with your students. Also, | have not repeaed material aready
stated in the bodk’ s preface

A minimal set of multiple choice questions is provided. It is easy to generate
additional questions from both these multiple choice questions (for example,
replaceinorder with postorder, and you have adifferent questionin Chapter 18)
and from some of thein chapter exercises. It isaso asimple matter to designtrue/
false questions or fill in questions based onwhat is provided. My own preference
is to give threetypes of questions on an exam: long answer (write a ©de frag-
ment...), simulation (show the data structure dter the following operations...), and
guestions. Of course if you have very large sedions, grading this might be too
time consuming.

As mentioned in the textbook, the source @mde is avail able online. | have not
included any additional diredly compilable code in this supplement.

Appendix A provides two syllabii: One for the separation approach, and ore
for the traditional approach. Eight assignments are described in Appendix B.
Many many more are sugested as Programiring Projects throughout the text.

E-mail

Please send comments and error reportsto wei ss@ i u. edu. Eventually, my
home pageht t p: / / www. fi u. edu/ ~wei ss will maintain an updated error
list and additional notes.

Preface

Chapter 1

Pointers, Arrays, and Structures

1.1 Key Concepts and How To Teach Them

This chapter introduces sveral concepts:

 basic arrays (first-classarrays, using vect or)

» basicstrings(usingstri ng)

* pointers

» dynamic dlocaion

 referencevariables and parameter passng mecdhanisms
* structures

Depending on the students’ background, some or even all of this chapter
could be skipped, but | recommend at least aquick review of the chapter in all cir-
cumstances. Students who have not had C or C++ should go through the entire
chapter slowly. It is easy for students to think they understand the material in this
chapter based onan ealier course, and my experienceis that they do nat.

111 Arrays

Modern C++ arrays use the standard vect or class and avoids the C-style aray.
I like to explain the ideaof using alibrary class, so as to lead in to Chapter 2.
Remind students that array indexing starts at 0 and gaesto si ze() - 1. Off-by-
one arors are very common; make sure the students are avare of these possbili-
ties, and that the standard vedor is not bounds chedked (we write abetter one in
Chapter 3). Explain parameter passing. Finally discuss the push_back idea. |
have foundthat push_back iseasy for students to understand.

1.1.2 Strings

There is not much to do here; avoid C-style strings. You may prefer to do strings
before arays.

Pointers, Arrays, and Structures

1.1.3 Pointers

Draw the usual memory pictures and emphasize that a pointer object is an dbject
that stores amemory address Go through as many examples as you can to distin-
guish between accessng a pointer and dereferencing it. Note: The NULL constant
is defined in several header files, includingst dl i b. h.

1.1.4 Dynamic Allocation

Thisis here to avoid forward references in the text. Y ou may prefer to delay this
material urtil linked lists are discussed. Or you can preview the ideaof new and
del et e, and explain the problems of stale pointers and dowble-deletion. Explain
the term memory leak.

1.15 Reference Variables and Parameter Passing Mech-
anisms

The key topic hereisthe distinction between cdl-by-value, cdl-by-reference, and
call-by-constant reference. Emphasize over and over again, that there are really
three forms of parameter passing and that the const is not merely window
dressng. Here ae my rules:

» Call by value: used for IN parameters for built-in types
« Call by constant reference: used for IN parameters for classtypes
» Cadl by reference used for IN OUT parameters

Many students insists on pasdng i nt objects by constant reference; thisis
wrong! It induces the overhead of pointer indirection when the reference is
acces=d inside the function.

Many students get confused about passng pinters. When a pointer objed is
pasd, the value of the objed is an address Passng a pointer by reference means
that where the pointer points at could change. Thisis useful for resizing dynami-
cally alocaed C-style arays and aso in binary treeupdates.

1.1.6 Structures

Thisisaquickie opener to the dass discussion. A C-style structure achieves the
grouping of data, but does not provide for information hiding a encapsulation o
functionality. Even so, some issues become evident and are worth discussng:

1. Structures shoud be passd either by reference or constant reference.
2. Deepvs. shallow copy.
3. Quick introduction to the linked list, C-style.

Solutions To Exercises

1.2 Solutions To Exercises

In Short

11 Pointers can be declared and initialized, they can be assigned to point at
an object, they can be dereferenced, they can be involved in arithmetic.
The aldressof operator can be gplied to a pointer in the same manner as
any ather objed.

1.2 (a) Yes; (b) Both have the same value & A; () *pt r Pt r =&b; (d) No;
these objeds have diff erent types.

13 (a) Yesaslongasx isan dbjed. (b) No, because x might not be apointer.

14 (a) the addresswhere a is dored; (b) the value of a (5); (¢) 1; (d) thisisa
type mismatch, and if accepted by the compil er is most likely O; (e) the
addresswherept r is gored; (f) illegal, becaise a isnot apainter; (g) the
value of a (5); (h) the value of a (5).

15 () a isamember of typei nt in struct S and b isa member of type
pointer to Sin struct S; (b) z isof type S; () x is of type pointer to S; (d)
y isof type aray of 10S; (e) u isof type aray of 10 pdnterto S; (f) x-
>a isof typei nt; (g) x- >b is of type painter to S; (h) z. b is of type
pointerto S; (i) z. aisof typei nt; (j) *z. aisillegal because z. a is
not a pointer type; (k) (*z) . a isillegal because z is not a pointer type;
() (this question should na be here) x- >b- z. b isasubtradion of point-
ersandisthusof typei nt ; (m) y- >aisillega; (n) y[1] isof type S;
(o) y[1] . aisof typei nt; (p) y[1] . b is of type pointer to S; (q)
u[2] isof typepainterto S; (r) *u[2] isof typeS; (s) u[2] - >a isof
typei nt; (t) u[2] - >b is of type pointer to S; (u) u[10] is of type
pointer to S but is past the dedared bounds of u; (v) &z is of type pointer
to S; (w) &x is of type pointer to pdnter to S; (x) u is of type array of
pointer to S; (y) y isof type aray of S.

16 The picture below refleds a, b, and ¢ after the dedarations. The state-
ment b=5 changes a to 5andthen c=2 changesa to 2

b —_|

T
a =3
/

c —

Pointers, Arrays, and Structures

17

1.8

1.3

11

12

13.

Thisis perfedly legal. However if the const is moved from the second
dedaration to the first, then the dedaration and initialization o b would
beillegal.

/ * begins acomment.

Exam Questions

For the declarations below, which statement isillegal?
int *ptril;
int *ptr2;
int a = 5;

aptrl = ptr2;

b.ptrl = ga;

c.ptrl = &a;

d *ptrl = *ptr2;

e *ptrl = a;

For the dedarations below, which expressonistrueif ptr 1 andptr 2
point at the same object?

int *ptril,

int *ptr2;
aptrl == ptr2
b. *ptrl == *ptr2
C.*(ptrl == *ptr2)
d. &trl == &ptr2
e. None of the above

For the declaration below, what isthe type of *a?

const int *a;

a int
b. const int
c.int *

d. const int *
€. none of the &ove

1.4.

1.5

1.6.

17.

18.

Exam Questions m

A memory leak occurs when:

a. A loca array isdeleted.

b. A dynamicdly allocated object is deleted.

c. A dynamicdly allocated object isno longer referenced.
d. Two pointers point at the same object.

e. A dynamicdly allocaed object is deleted twice.

Which of the following parameter passng medhanisms can be used to
ater a parameter?

a. Call by value

b. Cadll by reference

c. Call by constant reference
d. All of the dove

€. None of the above

A shallow copy refersto

a. the copying of small objeds

b. the copying of pointers

c. the copying of objects that are being pinted at
d. the mpying of basic types, such asintegers

e. cal by value

Exogenous data is

a. asmall member of astructure
b. alarge member of a structure

C. an doject that is nat part of the structure, but is pointed at by the
structure

d. aglobal variable
e. the etire structure

If f isamember of structure S, and p is of type pointer to S, then which
expresson must be legal?

ap.f

b. p- >f

c. *p.f

ds.f

€. More than one of the above

m Pointers, Arrays, and Structures

19

1.10.

What is the result of the following?

int x = 5;
int & ref = x;
ref ++;

a. It increments x

b. It incrementsr ef
c. It increments* r ef
d. It increments &r ef
e ltisillega

What is the result of the following?

int x = 5;

int *ptr = &x;
int * &ref = ptr;
*ref ++

a. Itincrementspt r
b. It incrementsr ef
c. It increments x

d. It increments &r ef
e ltisillega

Answersto Exam Questions

=
o

© o N U~ WDN R

(o8]

>0 OO ®>

Chapter 2

Objects and Classes

2.1 Key Concepts and How To Teach Them

Students who have not had C++, with a description d class design, will need to
go through this chapter in its entirety. Students who have may want to quickly
review the chapter.

This chapter introduces the general concept of encapsulation and information
hiding, but is geared towards practical use of C++ with lots of emphasis on
designing classes and syntax. Y ou may want to have the students bring a copy o
the acode to class ® youcan avoid rewriting the dasss. You also may want to
devote an entire dassto reviewing the common error sedion at the end o the
chapter. The basic concepts are:

« the dass construct

e public and private sedions

* interfacevs. implementation

» constructors, destructors, copy constructor, and copy assgnment operator
e const member functions

» this pointer

 operator overloading

» type wnversions

« |/O

* dtatic classmembers

» enum, and constant classmembers
* string classimplementation

2.1.1 The cl ass Construct

Describe how the structure adieves the grouping of data members, and that C++
extends it to allow information hiding and encapsulation of functionality. The
basic mechanism for the latter is to allow functionsto be data members. Y ou can

m Objects and Classes

illustrate thiswith | nt Cel | . Add the private and public after discussing it.

2.1.2 Public and Private Sections

This ansto be arelatively easy topic. Explain that everything in the private
sedion isinacaessible to nonclass routines. Continue with the |l nt Cel | exam-

ple.

2.1.3 Interface vs. Implementation

Explain that the implementation of member functions cannot be practica for
large classes, so we have to separate. Continuewith | nt Cel | class At this point
you can describe the entire layout for separate compil ation (if appropriate), and
remark about the#i f ndef / #endi f trick.

2.1.4 Constructors, Destructors, Copy Constructor, and
Copy Assignment oper at or =

Explain that in addition to particular member functions, every class has implicit
charaderigtics aich as creaion, destruction, and copying. The mecdhanicsin C++
are complex because of default scenarios and syntax.

Describe the mnstructor first. Show how a dedaration is matched by a wn-
structor. Warn about several potential errors (see @mmon errors). Next show the
copy constructor. Explain over and over again the diff erence between the wmpy
constructor and oper at or =: The copy constructor is cdled when a new objed
is creaed, while oper at or = copiesinto an already existing ohjed. Emphasize
the signature of the copy constructor (it takes a constant reference). Finally,
describe the destructor. It is enoughto say at thistime that it cleans up things.

Remark about the defaults: The rules are uniform, and boil s down to mem-
ber-by-member application. If no constructor is provided, a default zero-parame-
ter constructor is generated. The wpy constructor is not courted in deddingif a
default zero-parameter constructor is generated.

Remark about initializer lists. These ae very important for more complex
cases, and must be used for constant members or reference members.

Explain that copy constructors are needed for cdl by value and return by
value. Both o these mechanisms generate ahidden temporary by using the @wpy
constructor (and then eventually cdl a destructor for the temporary). Later on,
return types are discussed (when operator overloading is examined).

Explain that if the destructor is non-trivial, then the copy constructor and
copy assignment operator must amost certainly not use the default.

Key Concepts and How To Teach Them m

2.1.5 const Member Functions

Thisis ancther often overlooked task. Constant member functions promise not to
change the state of an object. Consider carefully whether each member function
should be aconstant member function. This is not merely an afterthought. Pro-
vide an example where it matters.

2.1.6 t hi s Pointer

Thet hi s pointer entersinto place when assgnment operators are overloaded. It
isused in both the return value (*t hi s) and in testing for aliasing
(*t hi s==&r hs). Emphasizethe distinction between t hi s and *t hi s. Here
are examples where aliasing can hurt:

1. Copying from onefile to ancther. If file names are the same, thefileis
probably clobbered unessa ched is performed first.

2. strcat (a, a) falsinprimitive C; overlapping memory copiesfail in
most languages.

3. A smpleimplementation of oper at or/ = for theRat i onal classif
temporaries are not used will fail. Thisisanice convincing example
because = does work, and gves afalse sense of seaurity. Explain that
the test should always be performed becaise it istoo hard to try to
dedde whether or not it might be needed.

2.1.7 Operator Overloading

For assgnment operators, explain the signature and the return type. The return
type is a mnstant reference because it is just a synonym for the object being
assgned to. Explain that the return value represents the value of the expresson, a
op= b, when used in afurther expression. If the return type was voi d, that
would still change a, and would mean orly that the result of the assgnment could
not be used in alarger expresson. Show an implementation that includes alias
testing and areturn of *t hi s.

For binary operators, we dways have mnstant member functions and con-
stant reference parameters because the objeds do not change. The return valueis
by copy because the result is a brand new objed that did na exist. Explain how
reference returns would give garbage. Then show how these operators can always
be implemented in terms of the @rresponding assgnment operators. Comparison
operators are straightforward.

Unary operators have no parameters. Explain why oper at or + can return a
constant reference but oper at or - canna (because in the first case, we have a
synonym for an already existing ohed). The ++ and - - operators are used later
on, so discuss them briefly. Again, as the functions are described, make the stu-
dents tell youif they shoud be cnstant members and what the return types and

m Objects and Classes

parameters shoud be.

2.1.8 Type Conversions

Several things: first, a constructor defines an automatic type conversion whether
you want it or not. Second, for a member function, the wntrolling objed (and
first parameter for operators) must be an exad match. Third, for reference param-
eters, the match must be exact (for constant reference, conversions are ok).
Fourth, type mnversion ogerators can be written, but avoid them because they
will introduce ambiguities.

2.1.9 I/O (Friends), and More on Binary Operators

I/0 isadieved by overloading << and >> for ost r eamand i st r eamobjeds.
Sincethefirst parameter isnat of the dass it must be aglobal function. Since the
global function accesses private members, it must be afriend. Remark that the
same trick is used for mixed types of operators, such as ==; furthermore, remark
that althouwgh afriend function

bool operator!=(const Rational & | hs, const Rational & rhs);

will match Rat i onal andi nt interchangeably, it involves the overhead of
construction and destruction. Asaresult, ahigh quality classwould have function
for each case. If Rat i onal isontheleft side, oper at or! = isoverloaded as a
member function (with ore lessparameter); otherwise it is afriend function. | do
not like using friends; Section 24.1 shoud be enphasized.

2.1.10 stati c Class Members
Not abig ded. Describe it briefly.

2.1.11 enum and Constant Class Members

Y ou may want to explain the enumtrick at some point. | hardly useit. For con-
stants, | usest ati ¢ const defined in implementation files. These ae static
global variables. Thisrestrictsits visibility to the implementation file, and avoids
possble name dashes. An alternative is a static constant member.

2.1.12 StringClass

Thisis not a high-quality replacement, but does ill ustrate the basics. Thereisn't
redly much new here, except for the two versions of operat or[] . Thisis
worth a short discusdon, but not much more than that, sinceit isatednicd detail
and isfairly confusing.

Solutions To Exercises n

2.2 Solutions To Exercises

In Short

21 Information hiding makes implementation details, including comporents
of an adbject, inaccessble. Encapsulation is the grouping of data and the
operations that apply to them to form an aggregate whil e hiding the
implementation of the aggregate. Encapsulation and information hiding
are achieved in C++ through the use of the dass

22 Members in the public sedion d a dassare visible to non-class routines
and can be accessed viathe. member operator. Private members are not
visible outside of the dass

2.3 The constructor is caled when an object is created, either by dedaration,
acal to new, or as a member of an ohjed which itself is being con-
structed. The destructor is call ed when the object exits cope, either
because it isalocd variable in aterminating function, it is subjed to a
del et e, or it isamember of an objed whose destructor is cdled.

24 The oopy constructor creates and initializes a new object. It is used to
implement call by value. The copy assgnment operator copies into an
drealy existing doject.

25 The default constructor is a member-by-member application d a default
constructor. The default destructor is a member-by-member application
of adestructor.

2.6 A destructor is not needed if noresources are dlocated for the objed or if
all ocated resources are deall ocated automaticdly by the default destruc-
tor. oper at or = and a apy constructor shoud be provided whenever a
default would be wrong The most common example involves data mem-
bersthat are pointers. The default would be ashallow copy.

2.7 (This material is not explicitly discussd in the second edition and thus
this question should have been removed.) The benefit of an inline func-
tionisthat it avoids the overhead of afunction cdl. One disadvantage is
that it increases code size (which may offset the gain incurred by avoiding
afunction cdl). A second dsadvantage is that the definition d an inline
function must be visible to all calling routines and the calling routines
must be recompil ed when the definition of the inline function changes.

2.8 Four operators cannot be overloaded: . , . *, ?: , and si zeof . Prece-
dence cannat be dhanged, arity cannat be changed, and ony existing
operators can be overloaded.

29 A friend function d classCis afunction that is not a member of C but
nonethelesshas accessto C s private members.

210 << and>> nedalto be overloaded as friend functions. The first parameter
and return type ae ost r ean& for output andi st r eam& for input. The
second parameter isa mnstant referenceto aCl assName object for out-
put and areferenceto aCl assName objed for inpu.

211 (i and k may be beyond the scope of this edition of thetext.) a, b, andd

Objects and Classes

212

2.13

214

215

2.16

2.18

219

2.23

2.24

areinitialized using the cnstructor at line 25. Theinitial values are 0, 3,
and 0, respedively. ¢ and e areinitialized using the constructor at line 27.
f isafunction that returnsa Rat i onal objed. g and h point at objects
created by acall to the constructors at line 27 and 25, respectively. i
points at an array of 5 ojeds ead constructed by the constructor at line
25 (with default initial value 0). j represents a vector of size 10, with
each object constructed as was done for i . k represents an array of 10
zero-sized vectors.

(i may be beyondthe scope of this edition d the text.) We need three
cals:

del ete g;
del ete h;
delete[] i;

Thesi zeof operator returns the size of the object, including all private
members.

In that situation, no operations can be performed onthe class

In Theory

If r hs ispassed by copy, the awpy constructor will be cdled ad-infini-
tum.

In Practice

(d) Although * can be overloaded, its precedenceislow, so 1+2 3 (with
Rat i onal objeds)would evaluate to 27.

(a) The return type should be ast ri ng (that is, return by value), unless
thest ri ng classitself is drastically rewritten. (c) The differenceisthe
usual diff erence between initiali zation versus assgnment. In alternative
2, an empty string is constructed, and then a @wpy is performed. This
could be more expensive that the initialization at construction.

(a) Yes, because the char can be implicitly converted usingastri ng
constructor. (b) A temporary iscreaed, and st ri ng: : oper at or +=is
used.

Programming Projects

First, movet ot al Days into the private section. The default construc-
tors and destructor are acceptable. oper at or += should return a on-
stant reference. The parametersto oper at or - andoper at or < should
be references. The implementation is left to the reader.

The defaults are accetable.

Exam Questions

2.3 Exam Questions

2.1. Which of the following is the most dired example of how encapsula-
tionis supported in C++7?

a. constructors

b. destructors

¢. member functions

d. public and private spedfiers
e. the dassdedaration

2.2. Which of the following is the most dired example of how information
hiding is supported in C++?
a. constructors
b. destructors
¢. member functions
d. publ i c andpri vat e spedfiers
e. the dassdedaration

2.3. What is the differencebetween ast r uct andacl ass?

a. constructors and destructors are dlowed for thecl ass
b. member functions are dlowed for the cl ass

¢. members are private by default for thecl ass

d. copyingisnot alowed for the st r uct

e. none of the &ove

24. Which of the following shoud be placel in a header file?

a. classinterface
b. classimplementation
c. inline function bodes
d. (@) and (c)
e. (a), (b), and(c)
25. What happens if a non-classfunction attempts to accessa private mem-
ber?
a. compiletime aror
b. compile time warning, but program compil es
c. the program compiles but the results are undefined
d. the program is certain to crash
e. some of the dove, but the result varies from system to system

m Objects and Classes

2.6.

2.7.

2.8.

29.

2.10.

When a parameter is passed call by value, what functions are guaran-
teed to be clled?
a. zero-parameter constructor

b. copy constructor

C. destructor

d. operator=

e. two o more of the éove

Suppose the st ri ng classdefines oper at or == as a class member
with asingle st ri ng parameter. Assume that no aher oper at or ==
are defined, that a mnstructor for st ri ng from const char * is
defined, but oper at or const char* () isnot defined. s is of
typest ri ng. Which of thefollowingisillegal?

a S==

b. s=="j unk"
c. "junk"==s
d. dl areillegal
e. dl arelegd

If aclasscontains a pointer to dynamicadly all ocated memory, which of
the following defaultsis likely to be unacceptable?

a. copy constructor
b. destructor

C. operator=

d. al of the above
e. none of the &ove

Which of the following does not default to member-by-member appli-
cation?

a. zero-parameter constructor

b. copy constructor

c. destructor

d. operator=

e. dl of the above default to member-by-member application.

When is adestructor not called?

a. A locd automatic variable goes out of scope
b. A pointer variable goes out of scope

c. delete

d. delete []

e. Destructors are called in al instances

Exam Questions m

211, A copy constructor isnot cdled for

a. cal by value

b. return byvaue

c.string s =t; /[l t is also a string
dstring s(t); // tis also a string

es =t; // s and t are both string

2.12. What is the prototype for the copy constructor?

a ClassType();

b. d assType(C assType);

c. G assType(C assType &);

d. G assType(const ClassType &);
€. None of the above

2.13. A constant member function means that:

a. All of the parameters are constant

b. The objed being acted upon is a constant

C. The parameters are not passed using cdl by value
d. Theresult of the function cdl cannot be assigned to
e. none of the dove

214, Which condtion occurs when the same object appears as both an input
and output parameter?

a diasing

b. copy construction

. operator overloading
d. type conversion

e. none of the dove

2.15. The current objed is given by

athis
b. *this
c. & his
d **this
e. none of the &ove

n Objects and Classes

2.16. Which o the following statementsisfalse?

a. some operators cannat be overloaded

b. the precalence of an operator cannot be changed

. the arity of an operator cannot be changed

. only existing operators can be overloaded

. binary operators can be overloaded only if both operands have the
same type.

O Q0

2.17. If oper at or == iswritten as member function, how many parameters
should it have?

a. none
b. 1, passd by value

c. 1, passd by constant reference

d. 2, both passd by value

e. 2, both passed by constant reference

2.18. Which of the following st ri ng operators should nat return by con-
stant reference?

)

oper at or =

. oper at or +=

. unary oper at or +

. binary oper at or +

e. constant referenceis acceptable for al of these

2.19. Which of (a) to (d) isfalse abou the pointer t hi s?

o O T

)

it is used to test for diasing

. it isused for the return in an assgnment operator
. t hi s isnot modifiable

. *t hi s isnot modifiable

e. dl of the above aetrue

o O T

2.20. Initializer listsare used in

a. assgnment operators
b. al member functions
C. constructors

d. destructors

e. friend functions

Exam Questions

2.21. Which of (a) to (d) isfalse abou overloading << for output?

a. the output function cannot be a ¢assmember

b. the output function must be afriend

c. the output function takes a stream passed by reference
d. the output function takes an objed passed by reference
e. more than one of the abowve statementsis false

2.22. Which of (a) to (c) isfalse about a static classmember?

a. adefining declaration must be placeal in the implementation file
b. one member is all ocaed for ead dedared classobjed

c. the static dassmember is guaranteed to be private to the dass
d. two of the above aefalse

e. dl of (a), (b), and (c) arefalse

2.23. Which of the followingis not part of the function signature?

a. function name

b. constant member function dedaration
C. parameter passng mechanisms

d. returntype

e. dl of the above ae part of the signature

2.24. Which o the following parameter passng mechanisms requires an
exad match?

a. call by value

b. cdl by reference

c. cal by constant reference

d. al of the above require exact matches
e. none of the &ove require exad matches

2.25, In which of the following casesisa dassmember M invisiblein afunc-
tionF?
a. Fisamember function and M is private
b. Fisafriendfunction and M is private
c. Fisagenera functionand M is public
d. Fisagenera functionand M is private
e. none of the éove

Answersto Exam Questions

1. C

“ Objects and Classes

OO0 OoO<CUO OO WD WO wWwOOoOoownoomaAON

NSO~ O A NI O NGB O Jd NG S W0
A A A A A A" NNNNNN

