10.
12.

14.

Chapter 2: One-Dimensional Kinematics

Answers to Even-Numbered Conceptual Questions

An odometer measures the distance traveled by a car. You can tell this by the fact that an odometer has a nonzero
reading after a round trip.

No. Their velocities are different because they travel in different directions.

Since the car circles the track its direction of motion must be changing. Therefore, its velocity changes as well. Its
speed, however, can be constant.

(a) The time required to stop is doubled. (b) The distance required to stop increases by a factor of four.
Yes, if it moves with constant velocity.

(a) No. If air resistance can be ignored, the acceleration of the ball is the same at each point on its flight. (b) Same
answer as part (a).

(a) No. Displacement is the change in position, and therefore it is independent of the location chosen for the origin. (b)
Yes. In order to know whether an object’s displacement is positive or negative, we need to know which direction has
been chosen to be positive.

Solutions to Problems and Conceptual Exercises

Picture the Problem: You walk in both the positive and negative mu house Park
directions along a straight line.

ﬁ 5& " Labcaxy Friend's
Strategy:The distance is the total length of travel, and the ﬂ 75 mi— s_a % Tt - house
displacement is the net change in position. We place the origin at To0mi 1:_._;_ a“ﬂ . ffw
the location labeled “Your house.” 035 mi -
Solution: 1.(a)Add the lengths: (0.75+0.60 mi)+(0.60 mi) =
2. (b)Subtract x;from x; to find the displacement. AX =X —% =0.75—0.00 mi =

Insight: The distance traveled is always positive, but the displacement can be negative.

Picture the Problem: You walk in both the positive and negative xmm e Park
directions along a straight line.

Library . .
Strategy: The distance is the total length of travel, and the Dﬁq E % 5& o o Friend's
displacement is the net change in position. We place the origin at unu — _“ *“_% ,@ :
the location labeled “Your house.” "':L._,"{q n: 5
Solution: 1.(a) Add the lengths: (0.60+0.35 mi)+(0.75+0.60+0.35 mi) =
2. (b) Subtract x;from x; to find the displacement. AX =X —% =0.00—0.75 mi =

Insight: The distance traveled is always positive, but the displacement can be negative.
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3. Picture the Problem: Player A walks in the positive direction and player B walks . e
in the negative direction. A& B
Strategy: In each case the distance is the total length of travel, and the 5m 12 m
displacement is the net change in position.
Solution:1. (a)Note the distance traveled by player A:
2.The displacement of player A is positive: AX=X —X% =5m-0m=
3. (b) Note the distance traveled by player B:
4.The displacement of player B is negative. Let AX=% —X% =5m-7m=
the origin be at the initial position of player A. '
Insight: The distance traveled is always positive, but the displacement can be negative.
4.  Picture the Problem: The ball is putted in the positive direction First putt =
and then the negative direction. L Om "_‘55 e
. |
Strategy: The distance is the total length of travel, and the ﬁ 3 i '
displacement is the net change in position. 4 v e e | —
Solution:1.(a) Add the lengths: (10+2.5m)+25m=
2. (b) Subtract x;from x; to find the displacement. AX=% —X =10-0m=
Insight: The distance traveled is always positive, but the displacement can be negative.
5. Picture the Problem: The runner moves along the oval track. 1 100 m )
{ F%
Strategy: The distance is the total length of travel, and the i ¢ B 30{“
displacement is the net change in position. = il
Solution:1. (a)Add the lengths: (15 m)+(100 m)+(15m) =
2. Subtract xifrom ¢ to find the displacement. AX=% —x =100-0m=
3. (b)Add the lengths: 15+100+30+100+15 m=
4. Subtract x;from x; to find the displacement. AX=X —%=0-0m=

Insight: The distance traveled is always positive, but the displacement can be negative. The displacement is always
zero for a complete circuit, as in this case.
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6. Picture the Problem: The pony walks around the circular track.

Strategy: The distance is the total length of travel, and the A B
displacement is the net change in position.

Solution:(a)1.The distance traveled is half the circumference: d=1%(2zr)=nr=x(525m)=
2. The displacement is the distance from A to B: AX=X —X% =2r= 2(5.25 m) =

3. (b) The distance traveled will when the child completes one circuit, because the pony will have taken more
steps.

4. (c) The displacement will when the child completes one circuit, because the displacement is maximum
when the child has gone halfway around, and is zero when the child returns to the starting position.

5. (d) The distance traveled equals the circumference: d =2zr=27(525m)=

6. The displacement is because the child has returned to her starting position.

Insight: The distance traveled is always positive, but the displacement can be negative. The displacement is always
zero for a complete circuit, as in this case.

7.  Picture the Problem: You drive your car in a straight line at two different speeds.

Strategy: We could calculate the average speed with the given information by determining the total distance traveled
and dividing by the elapsed time. However, we can arrive at a conceptual understanding of the answer by remembering
that average speed is an average over time, not an average over the distance traveled.

Solution:1. (a) The average speed will be 20 m/s because you will spend a longer time driving at the lower
speed. You will cover the second 10 km distance in less time at the higher speed than you did at the lower speed.

2. (b) The best answer is [I. More time is spent at 15 m/s than at 25 m/g because the distances traveled at each speed are
the same, so that it will take a longer time at the slower speed to cover the same distance. Statement Il is true but
irrelevant and statement I11 is false.

Insight: The time elapsed at the lower speed is (10,000 m)/(15 m/s) =667 s and the time elapsed at the higher speed is
(10,000 m)/(25 m/s) = 400 s, hence the average speed is (20,000 m)/(1067 s)=18.7 m/s.

8.  Picture the Problem: You drive your car in a straight line at two different speeds.

Strategy:We could calculate the average speed with the given information by determining the total distance traveled
and dividing by the elapsed time. However, we can arrive at a conceptual understanding of the answer by remembering
that average speed is an average over time, not an average over the distance traveled.

Solution:1. (a) The average speed will be 20 m/s because you will spend an equal amount of time driving at
the lower speed as at the higher speed. The average speed is therefore the mean value of the two speeds.

2. (b) The best answer is [I11. Equal time is spent at 15 m/s and 25 m/s| because that fact is stated in the question.
Statements | and Il are both false.

Insight: The distance traveled at the lower speed would be (15 m/s)(600 s)=9000 mand the distance traveled at the
higher speed would be (25 m/s)(600 s)=15,000 m so the average speed is (24,000 m)/(1200 s) = 20.0 mys.
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10.

11.

12.

13.

Picture the Problem: A runner sprints in the forward direction.

Strategy: The average speed is the distance divided by elapsed time.

. . . . distance 200.0 m Imi 3600s -
Solution: Divide the distance by the time: S= = :-_10.42 m/s = _23.32 mi/h
y time  19.19s *1609m . 1h

Insight: The displacement would be complicated in this case because the 200-m dash usually takes place on a curved
track. Fortunately, the average speed depends upon distance traveled, not displacement.

Picture the Problem: A kangaroo hops in the forward direction.

Strategy: The distance is the average speed multiplied by the time elapsed. The time elapsed is the distance divided by
the average speed.

Solution:1. (a) Multiply the dost— [65 k_m](g_z minx LN Jz
average speed by the time elapsed: h 60 min

L : d 0.25km 60 min
2. (b) Divide the distance by the average speed: t=—= = -4 S
s e5kmh  1h

Insight: The instantaneous speed might vary from 65 km/h, but the time elapsed and the distance traveled depend only
upon the average speed during the interval in question.

Picture the Problem: Rubber ducks drift along the ocean surface.

Strategy: The average speed is the distance divided by elapsed time.

Solution:1. (a) Divide g_d_1600mi 1609m 1mo  1d __155e5 )
the distance by the time: t 10mo _ 1mi 305d 8.64x10%
2. (b) Divide the distance by the time: g4 _1600mi imo  1d oo im

= X X
t 10mo 305d 24h

Insight: The instantaneous speed might vary from 0.098 m/s, but we can calculate only average speed from the total
distance traveled and time elapsed.

Picture the Problem: Radio waves propagate in a straight line.

Strategy: The time elapsed is the distance divided by the average speed. The distance to the Moon is 2.39x10° mi. We
must double this distance because the signal travels there and back again.

2d  2(2.39x10° mi)

. . . t="r= -7
Solution: Divide the distance by the average speed: S 186<10° mi/s

=257 ]

Insight: The time is slightly shorter than this because the given distance is from the center of the Earth to the center of
the Moon, but presumably any radio communications would occur between the surfaces of the Earth and Moon. When
the radii of the two spheres is taken into account, the time decreases to 2.52 s.

Picture the Problem: Sound waves propagate in a straight line from a thunderbolt to your ears.

Strategy: The distance is the average speed multiplied by the time elapsed. We will neglect the time it takes for the
light wave to arrive at your eyes because it is vastly smaller than the time it takes the sound wave to travel.

Solution: Multiply the average speed by the time elapsed: d=st=(340m/s)(6.55)=2200m =

Insight: The speed of sound, 340 m/s, works out to approximately one mile every five seconds, a useful rule of thumb
for estimating the distance to an approaching thunderstorm!
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14,

15.

16.

17.

Picture the Problem: Human nerve impulses propagate at a fixed speed.

Strategy: The time elapsed is the distance divided by the average speed. The distance from your toes to your brain is
on the order of two meters.

. - . 2
Solution: Divide the distance by the average speed: t= d = —Zm =10.02 s
s 1x10° m/s

Insight:This nerve impulse travel time is not the limiting factor for human reaction time, which is about 0.2 s.

Picture the Problem: A finch travels a short distance on the back of the tortoise and a longer distance through the air,
with both displacements along the same direction.

Strategy:First find the total distance traveled by the finch and then determine the average speed by dividing by the total
time elapsed.

Solution:1. Determine the total distance traveled: d =s,At, +5,At,
d =[(0.060 m/s)(1.5 min) (11 m/s)(1.5 min) | x 60 s/min
d=995m

2. Divide the distance by the time elapsed: S= a 995 m =

At 3.0 minx60 s/min

Insight:Most of the distance traveled by the finch occurred by air. In fact, if we neglect the 5.4 m the finch traveled
while on the tortoise’s back, we still get an average speed of 5.5 m/s over the 3.0 min time interval! The bird might as
well have been at rest during the time it perched on the tortoise’s back.

Picture the Problem: You jog for5.0 km and then travel an additional 13 km by car, with both displacements along the
same direction.

Strategy: First find the total time elapsed by dividing the distance traveled by the average speed. Find the time elapsed
while jogging, and subtract it from the total time to find the time elapsed while in the car. Finally use the travel-by-car
distance and time information to find the average speed with which you must drive the car.

Solution:1. Use the definition of average ate 9 _50+13km oo
speed to determine the total time elapsed. Su 25 km/h '
d 5.0 km
2. Find the time elapsed while jogging: At,=—t=—""—_—=055h
P 10991ng 8= T a1 km
3.Find the time elapsed while in the car: At, =At—At =0.72h —-0.55h =0.17 h
d 13 km
4. Find the speed of the car: S, = j =STTh- 76 km/h
, 0.

Insight:Notice that the average speed is not the average of 9.1 km/h and 76 km/h (which would be 43 km/h) because
you spend a much longer time jogging at low speed than you spend driving at high speed.

Picture the Problem: A dog continuously runs back and forth as

the owners close the distance between each other. ¢ %
13m/s 13m/s

Strategy: First find the time that will elapse before the owners » L g27ms i

meet each other. Then determine the distance the dog will cover J]L i * Q

if it continues running at constant speed over that time interval. | 82 m |
I . |

Solution:1. Find the time it takes each owner to walk Al = d _410m _ 3
half the distance (4.10 m) before meeting each other: s, 13mis
2. Find the distance the dog runs: d =sAt=(2.7 m/s)(3.155) =

Insight: The dog will actually run a shorter distance than this, because it is impossible for it to maintain the same
2.7 m/s as it turns around to run to the other owner. It must first slow down to zero speed and then accelerate again.
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18.

19.

20.

Picture the Problem: Blood flows at two different speeds through arteries during a specified time interval.

Strategy: Determine the average speed by first calculating the total distance traveled and then dividing it by the total
time elapsed.

Solution:1. (@) Because the time intervals are the same, the blood spends equal times at 1.0 m/s and 0.60 m/s, and its

average speed will be lequal t00.80 m/s|.

2.(b) Divide the total distance o _SAL+s,AL _ (LOm/s)(0.505)+(0.60 m/s)(050s) 0.80m
by the time elapsed: YAL+AL, 0.50+0.50's 1.00's
=/0.80 m/s

Insight: Average speed is a weighted average according to how much timethe blood spends traveling at each speed.

Picture the Problem: Blood flows at two different speeds through arteries over a specified distance.

Strategy: Determine the average speed by first calculating the total distance traveled and then dividing it by the total
time elapsed.

Solution:1. (a) The distance intervals are the same but the time intervals are different. The blood will spend more time
at the lower speed than at the higher speed. Because the average speed is a time-weighted average, it will be

0.80 m/s,

b) Divide the total di by the time elapsed: o _ Gi+d, _di+d, 1.00 m
2.(b) Divide the total distance by the time elapsed: » _At1+At2 _d1+d2_(0.50m+ o )
S S 1.0m/s 0.60 m/s

s,, =[0.75 ms]

Insight:The blood spends 0.50 s flowing at 1.0 m/s and 0.83 s flowing at 0.60 m/s.

Picture the Problem: You travel in a straight line at two different speeds during the specified time interval.

Strategy: Determine the distance traveled during each leg of the trip in order to plot the graph.

Solution:1. (a) Calculate the d, = s,At, =(12 m/s)(1.5 min x60 s/min)=1080 m
distance traveled in the first leg:

2. Calculate the distance traveled in the second leg: d, =s,At, =(0 m/s)(3.5min)=0

3. Calculate the distance traveled in the third leg: d, =s,At, = (15 m/s)(2.5 min x60 s/min) = 2250 m
4. Calculate the total distance traveled: d=d,+d,+d, =3330m
3330m

5.Draw the graph:

1080 m

|
15 O 7.5 min

. . . d, +d, +d, 3330 m
: Sy = = =74 m/s
6. (b) Divide the total distance by the time elapsed: % T ALTAL +AL 7.5 min <60 s/min

Insight: The average speed is a weighted average according to how much time you spend traveling at each speed. Here
you spend the most amount of time at rest, so the average speed is less than either 12 m/s or 15 m/s.
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21. Picture the Problem: As specified in the position-versus-time graph, the father 4
walks forward, stops, walks forward again, and then walks backward.
Strategy: Determine the direction of the velocity from the slope of the graph along z y 3
each segment. Then determine the magnitude of the velocity by calculating the 5 5
slope of the graph at each specified point. 2 :
o D
Solution:1. (a) The slope at A is positive so the velocity is |positive]. A
(b) The velocity at B is[zerd|. (c) The velocity at C is [positive]. (d) The velocity at
D is Pegtive ;
Ax 2.0m ! £ A ' :

2.(e) Find the slope of the graph at A: Vo = A 10s Tt ®

. AX 0.0m
3.(f) Find the slope of the graph at B: vyl

. Ax 1.0m
4.(g) Find the slope of the graph at C: Vy = At = 10s =

. AX -3.0m
5.(h) Find the slope of the graph at D: vyl

22.

Insight: The signs of each answer in (e) through (h) match those predicted in parts (a) through (d). With practice you
can form both a qualitative and quantitative “movie” of the motion in your head simply by examining the position-
versus-time graph.

Picture the Problem: The given position function indicates the particle begins traveling in the negative direction but is
accelerating in the positive direction.

Strategy: Create the x-versus-t plot using a spreadsheet, or calculate individual values by hand and sketch the curve
using graph paper. Use the known x and t information to determine the average velocity. To find the average speed, we
must find the total distance that the particle travels between 0 and 1.0 s, and then divide by 1.0 s.

Solution:1. (a) Use a spreadsheet or
similar program to create the plot
shown at right. Notice that the average
velocity over the first second of time is
equal to the slope of a straight line
drawn from the origin to the value of
the curve att = 1.0 s. At that time the

position is —2.0 m. 0 05 1 15 2
Time, ¢ (s)

ax_|(-5ms)(2.05)+(3mis*)(L0s) |-[0.0m]
o AT 10s

7

Position, X (m)

N

L R S R e L B ¥

2.(b) Find the average velocity
fromt=0tot=10s:

=[-2.0mss]

3.(c) To find the average speed, we

must determine the distance traveled.

First calculate the time at which x = 0:

4. The time at which the particle turns

around is half the time found in step 3.

Find x at the turnaround time:

5. Att=1s, the particle is at x=—2 m, so
it has traveled an additional 0.083 m after
turning around. Find the average speed:

0=(-5 m/s)t+(3 mis* )t’
5mis=(3m/s’)t = t=5/35=167s

x = (-5 mis)(5/6 s)+(3m/s)(5/6 s)" =—2.083m

2.083+0.083m _

- 2.2 m/s
10s

S

Insight: The instantaneous speed is always the magnitude of the instantaneous velocity, but the average speed is not
always the magnitude of the average velocity. For instance, in this problem the particle returns to x = 0 after 1.67 s, at
which time its average speed is s,, =4.17 m/1.67 s =2.50 m/s, but its average velocity is zero becauseAx = 0.
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23. Picture the Problem: The given position function indicates the particle begins traveling in the positive direction but is
accelerating in the negative direction.

Strategy: Create the x-versus-t plot using a spreadsheet, or calculate individual values by hand and sketch the curve
using graph paper. Use the known x and t information to determine the average speed and velocity.

Solution:1. (a) Use a spreadsheet to create the plot shown at right: x {m}
2.(b) Find the average velocity v, = Ax 5r
fromt=0tot=1.0s: At 45
[(6 mis)(1.0s)+(-2 mis*)(1.05)" |-[0.0 m] N
- 1.0s
v, =[40ms T
1
3.(c) The average speed is the L =|Va| = m

£{s)

magnitude of the average velocity: 0 1 7

Insight:Notice that the average velocity over the first second of time is equal to the slope of a straight line drawn from
the origin to the curve at t = 1.0 s. At that time the position is 4.0 m.

24. Picture the Problem: Following the motion specified in the position- 4
versus-time graph, the tennis player moves left, then right, then left again,
if we take left to be in the negative direction.

Strategy: Determine the direction of the velocity from the slope of the
graph. The speed will be greatest for the segment of the curve that has the
largest slope magnitude.

Position, x {m)

Solution:1. (a) The magnitude of the slope at B is larger than A or C so

we conclude [the speed is greatest at B|. 0 1 2 3 4 5
Time, ¢ (s)
Ax| |-2.0m
2.(b) Find the slope of the graph at A: Sy = % = % =|1.0 m/s
0s
Ax| |120m
3.(c) Find the slope of the graph at B: S, = u = u =12.0 m/s
At 10s
AX| |-1.0m
4.(d) Find the slope of the graph at C: Sa = % = % =10.50 m/s
0s

Insight: The speed during segment B is larger than the speed during segments A and C, as predicted. Speeds are
always positive because they do not involve direction, but velocities can be negative to indicate their direction.
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25.

26.

Picture the Problem: You travel in the forward direction along the roads leading to the wedding ceremony, but your
average speed is different during the first and second portions of the trip.

Strategy: First find the distance traveled during the first 15 minutes in order to calculate the distance yet to travel.
Then determine the speed you need during the second 15 minutes of travel.

Solution:1. Use the definition of average
speed to determine the distance traveled:

d, =sat =[50 M )(15.0 minx—" | =125 mi
h 60 min

2. Find the remaining distance to travel: d, =d,, —d; =10.0-1.25 mi =8.8 mi
3. Find the required speed for _d, 88mi _ -
the second part of the trip: 52 = At, T0250h 35 mi/h

Insight: The car needs an average speed of 10 mi/0.5 h = 20 mi/h for the entire trip. However, in order to make it on
time it must go seven times faster in the second half (time-wise) of the trip than it did in the first half of the trip.

Picture the Problem: The graph in the problem statement depicts the position of a boat asa |
function of time.

Strategy: The velocity of the boat is equal to the slope of its position-versus-time graph.

Solution:By examining the graph we can see that the steepest slope in the negative direction

(down and to the right) is at point C. Therefore, the boat had its most negative

velocity at that time. Points A, B, D, and F all correspond to times of zero velocity because the slope of the graph is
zero at those points. Point E has a large positive slope and we conclude the boat had its most positive velocity at that
time. Therefore, the ranking is:C<A=B=D=F<E|

Insight: The portion of the graph to the left of point B also corresponds to a time of high positive velocity.
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27.

Picture the Problem: The given position function indicates the particle begins traveling in the positive direction but is
accelerating in the negative direction.

Strategy: Create the x-versus-t plot using a spreadsheet, or calculate individual values by hand and sketch the curve
using graph paper. Use the known x and t information to determine the average speed and velocity.

1

05 o ——

TN
05 \
\

0 02 04 06 0.8 1

Time, ¢ (s)

Solution:1. (a) Use a spreadsheet to create
the plot:

Position, x (m)

-1

2.(b) Find the average Cax [(2 m/s)(0.45s)- (3 m/s3)(0.45 5)3}—[(2 m/s)(0.35 )~ (3 m/s3)(0.35 s)s}

velocity fromt=0.35t0 ' At 0.10s
t=045s: _

3 3
3O Findtheaverage | _ AX_ [(2mis)(0.415)~ (3 mis)(0.415)" || (2 mis)(0.39 5) (3 mis?) (039 5)' |
velocity fromt=0.39t0 " At 0.41-0.39s
t=041s: _

4.(d) The instantaneous speed at t = 0.40 s will be |c|oser t0 0.56 m/s|. As the time interval becomes smaller the average
velocity is approaching 0.56 m/s, so we conclude the average speed over an infinitesimally small time interval will be
very close to that value.

Insight:Notice that the instantaneous velocity at 0.40 s is equal to the slope of a straight line drawn tangent to the curve
at that point. Because it is difficult to accurately draw a tangent line, we often resort to mathematical methods like those
illustrated above to determine the instantaneous velocity.
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28.

29.

30.

Picture the Problem: The given position function indicates the particle begins traveling in the negative direction but is
accelerating in the positive direction.

Strategy: Create the x-versus-t plot using a spreadsheet, or calculate individual values by hand and sketch the curve
using graph paper. Use the known x and t information to determine the average speed and velocity.

1.0

05 1

0o

Solution:1. (a) Use a spreadsheet to create the plot:

Position, x (m}

-0.5 4

'1 U T T T T
oo 0z o4 06 0s 10
Time, t {s)

[(_2 m/s)(0.250 s)+ (3 m/s*)(0.250 s)ﬂ—

: : (-2 m/s)(0.150 s)+(3 m/s*)(0.150 s)’
2.(b) Find the average velocity v = AX [ ( ) } _

fromt =0.150 to t = 0.250 s: &AL 0.250-0.150 s

[(_z m/s)(0.210 s)+(3 m/s*)(0.210 3)3]‘

3
3.(c) Find the average velocity AX [(_2 m/s)(0.190 s) +(3 m/s* )(0.190 s) }

fromt = 0.190 to t = 0.210 s: Voy = = =|=1.64 m/s

At 0.210-0.190s

4.(d) The instantaneous speed at t = 0.200 s will be [closer to —1.64 m/g. As the time interval becomes smaller the
average velocity approaches —1.64 m/s, and we conclude the average speed over an infinitesimally small time interval
will be very close to that value.

Insight:Notice that the instantaneous velocity at 0.200 s is equal to the slope of a straight line drawn tangent to the
curve at that point. Because it is difficult to accurately draw a tangent line, we often resort to mathematical methods
like those illustrated above to determine the instantaneous velocity.

Picture the Problem: You accelerate your car from rest along two on-ramps of different lengths.
Strategy: Use the definitions of average speed and acceleration to compare your motion along the two on-ramps.

Solution: 1. (a) We can reason that because you accelerate between the same initial and final velocities, you must have
the same average speed along both on-ramps. If you have the same average speed, then you will accelerate for a shorter
period of time along the shorter on-ramp A. Your acceleration must be greater to achieve the same final velocity in a
shorter time. We conclude that your acceleration along on-ramp A is greater thanlyour acceleration along on-ramp B.

2. (b) As discussed above, the best explanation is [I. The shorter acceleration distance along ramp A requires a greater]
lacceleration]. Statement I1 is true but is not a complete explanation, and statement 111 is false.

Insight: We could also set v, = 0in the equation, v? =vZ +2aAx and solve for a: a =v?/2Ax From this expression

we can see that for the same final velocity v, youwill have a smaller acceleration when you accelerate over the greater
distance Ax.

Picture the Problem: An airplane accelerates uniformly along a straight runway.
Strategy: The average acceleration is the change of the velocity divided by the elapsed time.

Solution:Divide the change in velocity by the time: a = Av = 1560 mi/h X 0'447/:1/5 =11.98 m/s?
YAt 35.2s mi

Insight: The instantaneous acceleration might vary from 1.98 m/s?, but we can calculate only average acceleration from
the net change in velocity and time elapsed.
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31

32.

33.

34.

Picture the Problem: A runner accelerates uniformly along a straight track.

Strategy: The change in velocity is the average acceleration multiplied by the elapsed time.

Solution:1. (a) Multiply the acceleration by the time: V=V, +at=0m/s+(1.9m/s*)(2.0s)=
2. (b) The runner’s speed will be the same at the end V=V, +at=0 m/s+(1.9 m/SZ)(5_2 S) ~l99mis

oftherace asitisatt=5.2s:

Insight:World class sprinters have top speeds of over 10 m/s and can get up to speed in much less than 5.2 s.

Picture the Problem: An airplane slows down uniformly along a straight runway as it travels toward the east.

Strategy: The average acceleration is the change of the velocity divided by the elapsed time. Assume that east is in the
positive direction.
. L . . . Ve —V, -70.
Solution: 1. Divide the change in velocity by the time: a, =——>~= 0-70.6 mis =
At 13.0s
2. We note from the previous step that the acceleration is negative. Because east is the positive direction, negative
acceleration must be toward the west. Thus the jet has an acceleration of [5.43 m/s toward the west]

-5.43 m/s’

Insight:In physics we almost never talk about deceleration. Instead, we call it negative acceleration.

Picture the Problem: A car travels in a straight line due north, either speeding up or slowing down, depending upon the
direction of the acceleration.

Strategy: Use the definition of acceleration to determine the final velocity over the specified time interval. Let north be
the positive direction.

Solution: 1. (a)Calculate the velocity: V=V, +at=23.6m/s +(1.30 m/s*)(7.10 s) =[32.8 m/s north
2. (b)Calculate the velocity: V=V, +at=23.6ms +(~1.15 m/s*)(7.10 s) =[15.4 m/s north

Insight: In physics we almost never talk about deceleration. Instead, we call it negative acceleration. In this problem
south is considered the negative direction, and in part (b) the car is slowing down or undergoing negative acceleration.

Picture the Problem: Following the motion specified in the velocity- 15

versus-time graph, the motorcycle is speeding up, then moving at constant _

speed, then slowing down. é 5 B

Strategy: Determine the acceleration from the slope of the graph. ; i <
Av 10 m/s ;‘é ?

PR : . a =—-=
Solution: 1.(a) Find the slope at A: v~ At 505

_ o 5 10 5 20

Time, ¢ (s)
Av  0m/s
2.(b) Find the slope of the graph at B: a, = A = 1005 = -0.0 m/s?

Av  -5.0m/s
3.(c) Find the slope of the graph at C: &= = 100s —0.50 m/s®

Insight: The acceleration during segment A is larger than the acceleration during segments B and C because the slope
there has the greatest magnitude.
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35. Picture the Problem: Following the motion specified in the velocity- 8

versus-time graph, the person on horseback is speeding up, then
accelerating at an even greater rate, then slowing down. 6

K

g

. . 8 i s 2
Strategy: We could determine the acceleration from the slope of the *5
graph, and then use the acceleration and initial velocity to determine the 3
displacement. Alternatively, we could use the initial and final velocities 2
in each segment to determine the average velocity and the time elapsed to 4
find the displacement during each interval.
o 5 10 15 20 25
Time, ¢ (s)

Solution: 1.(a) Use the average velocity during . . _
interval A to calculate the displacement: Ax =3 (Vo +v)t=5(0+2.0m/s)(10) =
2.(b) Calculate the displacement during segment B: Ax=1(v, +V)t=1(2.0+6.0 m/s)(5.05)=
3.(c) Calculate the displacement during segment C: Ax=%(V,+V)t =21(6.0+2.0 m/s)(10s) =

Insight: There are often several ways to solve motion problems involving constant acceleration, some easier than
others.

36. Picture the Problem: A horse travels in a straight line in the positive direction while accelerating in the negative
direction (slowing down).

Strategy: Use the definition of acceleration to determine the time elapsed for the specified change in velocity.

Solution:Calculate the time interval: p=Y"Yo _ 5.51_8?2 ;n!s =
a -1.81m/s

Insight: An acceleration of greater magnitude would decrease the horse’s velocity in a shorter period of time.

37. Picture the Problem: Your car travels in a straight line in the positive direction while accelerating in the negative
direction (slowing down).

Strategy: Use the constant acceleration equation of motion to determine the time elapsed for the specified change in
velocity.

Solution: 1. (a) The time required to come to a stop is the change in velocity divided by the acceleration. In both cases
the final velocity is zero, so the change in velocity doubles when you double the initial velocity. Therefore, the stopping

time will increase by a when you double your driving speed.

2. (b)Calculate the stopping time: (=YY _0-18 mlj =
a —-4.2m/s
3. (c)Calculate the stopping time: po V=V _0-36 mis _

a —42mis®

Insight:Notice that the deceleration is treated as a negative acceleration in this problem and elsewhere in the text.
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38.

39.

40.

41.

Picture the Problem: A train travels in a straight line in the positive direction while accelerating in the positive
direction (speeding up).

Strategy: First find the acceleration and then determine the final velocity.

V-V, 47-0m/s

Solution: 1. Use the definition of acceleration: a= : 50 =0.94 m/s®
. S —_—
2.Calculate the final speed of the second segment, using v=v,+at=4.7m/s +(0.94 m/sz)(S.O s)
the final speed from the first segment as the initial speed:
V=

Insight: Another way to tackle this problem is to set up similar triangles on a velocity-versus-time graph. The answer
would then be calculated as v = (4.7 m/s) x 10s/5s=9.4m/s. Try it!

Picture the Problem: A particle travels in a straight line in the positive direction while accelerating in the positive
direction (speeding up).

Strategy: Use the constant acceleration equation of motion to find the initial velocity.
Solution: Calculate v, : Vo =V—at=9.31m/s —(6.24 m/s*)(0.450 s) =[6.50 m/s

Insight: As expected, the initial velocity is less than the final velocity because the particle is speeding up.

Picture the Problem: A jet travels in a straight line toward the south while accelerating in the northerly direction
(slowing down).

Strategy:Use the relationship between acceleration, velocity, and displacement (Equation 2-12). The acceleration
should be negative if we take the direction of the jet’s motion (to the south) to be positive.

VP—vZ 07 —(714 mis)’

——2.69 m/s? =|2.69 m/s? to the north|
2AX 2(949 m)

Solution: Solve for the acceleration: a=

Insight: The negative acceleration indicates the jet is slowing down during that time interval.Notice that Equation 2-12
is a good choice for problems in which no time information is given or requested.

Picture the Problem: Your car travels in a straight line toward the west while accelerating in the easterly direction
(slowing down).

Strategy:The average velocity is simply half the sum of the initial and final velocities because the acceleration is
uniform.

Solution: Calculate half the sum of the velocities: V,, =3(V, +V)=1(18+0 m/s) =[9.0 m/s to the west|

Insight: The average velocity of any object that slows down and comes to a stop is just half the initial velocity.
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42.

43.

Picture the Problem: A ball rolls down an inclined plane with constant acceleration.

Strategy: The ball starts at a positive value of its position x and must therefore travel in the negative direction in order
to reach the location x = 0.

Solution: 1. (a) No matter how fast the ball might initially move in the positive direction, away from x = 0, a constant
negative acceleration will eventually slow it down, bring it briefly to rest, and speed it up back toward x = 0. Therefore,
in icases 3 and 4|, where a< 0, the ball will certainly pass x = 0.

2. (b)It is possible for the initial velocity to be so large in the negative direction that a positive acceleration cannot bring
it to rest before it passes x = 0. Therefore, in where v, <0 and a> 0, it is possible that the ball will pass x = 0,

but we need more information about the relative magnitudes of v, and a in order to be certain.

3. (c) Whenever the initial velocity is opposite in sign to the acceleration, the ball will eventually come to rest briefly
and then speed up in the direction of the acceleration. Therefore, in we know that the ball will
momentarily come to rest.

Insight: If we suppose that a = +4.00 m/s? and that X, = 2.00 m, we can determine that an initial velocity of

Vi =V* —2aAx=0"-2(4.00 m/s’)(-2.00 m) = v, =—/8=-2.83 m/s is the threshold initial velocity for the ball

to reach the x = 0 position. With that initial velocity the ball will come to rest momentarily at x = 0 before speeding up
in the positive direction again.

Picture the Problem: A boat travels in a straight line with constant positive acceleration.

Strategy:The average speed is simply half the sum of the initial and final velocities becausethe acceleration is uniform.

Solution: 1. (a) Calculate half the sum of the velocities: V, =2(V +V)=%(0+4.82 m/s)=[2.41 m/s
2. (b) The distance traveled is the average
velocity multiplied by the time elapsed: d=v, t=(241m/s)(4.77 s)=

Insight: The average velocity of any object that speeds up from rest is just half the final velocity.
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44, Picture the Problem: The given position function indicates the car begins at a positive position, but is traveling in the
negative direction and accelerating in the negative direction.

Strategy:Compare the given position as a function of time with the symbolic expression to determine the initial
position, initial velocity, and acceleration of the car. Create the x-versus-t plot using a spreadsheet, or calculate
individual values by hand and sketch the curve using graph paper. Finally, use the known x and t information to
determine the distance traveled and the average velocity.

Solution: 1.(a) Compare the symbolic
formula with the given equation to
find the initial position;

2.Compare the symbolic formula with
the given equation to find the initial
velocity:

3. Compare the symbolic formula
with the given equation to find
acceleration:

4. (b) Use a spreadsheet or similar
program to create the blue plot shown at
right. The average velocity of the car
between 1.0 and 2.0 s is equal to the slope
of a straight line drawn from itsposition at
t=1.0 s and that at t =2.0 s as shown.

5.(c) Because the car travels in a straight
line and does not reverse direction, the
distance traveled equals the magnitude
of the displacement:

X=X, +V, t+1at® =(50 m)+(-5.0 m/s)t+(-10 m/sz)t2
= %, =[50 m|

X=X, +Vot+1at’ =(50 m)+(-5.0 m/s)t+(-10 m/s® )t*
=V, =[-5.0 mis]

X=X, +V,t+1at’ =(50 m)+(-5.0 m/s)t+(-10 m/s* )t*

la=-10 m/s’ = a=[-20 m/s’]

5,9.
40 +

Posithon, x (m)
N
[~

Time, 7 (s)

% = (50 m)+(-5.0 m/s)(0's)+(-10 m/s*)(0's)* =50 m

X = (50 m)+(~5.0 m/s)(1.0's)+(~10 m/s*)(1.0s)* =35 m
Ax=X —% =35-50m=-15m = distance = |Ax|=[15 m|

6.(d) Find the average velocity X =(50 m)+(-5.0 m/s)(1.0 s)+(—10 m/sz)(l.o s)2 =35m
f =1. =20s:
romt=10stot=20s ¥ =(50 m)+(-5.0 m/s)(2.0 s)+(—10 m/sz)(Z.O )’ =0m
AX X% —=% 0-35m
=22 i =[-35 my/s]
o T At t.—t  20-10s [-35 s

Insight: Average speed and average velocity are always the same as long as the object continuously travels in the same
direction. If it reverses course or travels in two (or three) dimensions, the relationship between the two is more
complex, but the distance traveled will always be greater than or equal to the displacement, so the average speed will
always be greater than or equal to the average velocity.
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45. Picture the Problem: The given position function indicates the ball begins traveling in the positive direction but is
accelerating in the negative direction.

Strategy:Compare the given position as a function of time with the symbolic expression to determine the initial
position, initial velocity, and acceleration of the ball. Create the x-versus-t plot using a spreadsheet, or calculate
individual values by hand and sketch the curve using graph paper. Finally, use the known x and t information to
determine the average velocity and the average speed.

Solution: 1.(a) Compare the symbolic X=X +V,t+1at? =(0m)+(5.0 m/s)t+(—10 m/sz)t2
formula with the given equation to

find the initial position; =X =

2.Compare the symbolic formula with X=X, +Vot+1at® =(0m)+(5.0 m/s)t+(-10 m/s® )t*
the given equation to find the initial

velocity: =V =

3. Compare the symbolic formula X=X, +Vot+1at’ =(0m)+(5.0 mis)t+(-10 mis® )t?

with the given equation to find

acceleration: la=-10m/s’ —a=

4. (b) Use a spreadsheet or similar
program to create the blue plot shown at
right. The average speedof the
ballbetween 1.0 and 2.0 s is equal to the
slope of a straight line drawn from
itspositionatt=1.0sand that att=2.0 s

Position, x (m)

as shown.
lime, 1 (s)

5.(c) Because the ball reverses direction, X, =(0m)+(5.0 m/s)(0s)+(-10 m/s*)(0's)" =0m
the average velocity from »
t=0tot=1.0sshould be calculated X =(0m)+(5.0 m/s)(LOs)+ (=10 m/s*)(L.Os)" =-5.0m
with careful attention to the signs: AX=% —X =-50-0m=-5m

v, =Ax/At=(-5.0m)/(1.0s) =
6.(d) Because the ball does not % =(0m)+(5.0 mis)(1.0s)+(-10 m/s*)(1.0s)* =-5.0m

reverse direction betweent = 1.0 s to
t=2.0's, the average speed is the X =(0 m)+(5.0 m/s)(2.05) +(~10 m/s*)(2.0's)" =30 m

magnitude of the average velocity: AX X — ~30-(-5.0) m
= = =-25m/s =|v, |= -25 m/s
t — 2.0-10s Vsl

X

V_
YOOAt ot -t

Insight: The instantaneous speed is always the magnitude of the instantaneous velocity, but the average speed is not
always the magnitude of the average velocity. For instance, in this problem the ball travels to +0.625 m at t = 0.250 s
and then to —5.00m at t = 1.00 s, a total distance of 6.25 m, while its displacement is —5.00 m. Hence its average speed
is 6.25 m/s while its average velocity is —5.00 m/s over the time interval betweent=0andt=1.0s
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46. Picture the Problem: A cheetah runs in a straight line with constant positive acceleration.

Strategy:The average velocity is simply half the sum of the initial and final velocities because the acceleration is
uniform. The distance traveled is the average velocity multiplied by the time elapsed.

Solution: 1. (a) Calculate half the sum of the velocities: V, =3(V, +V)=%(0+25.0 m/s) =12.5 m/s
2. Use the average velocity to find the distance: d=v,t=(125m/s)(6.22s) =

3. (b) For a constant acceleration the velocity varies linearly with time. Therefore we expect the velocity to be equal to

12.5 m/g after half the time (3.11 s) has elapsed.

4. (c) Calculate half the sum of the velocities: Va1 = (Y, +v) =1(0+12.5 m/s) = [6.25 mis|

5. Calculate half the sum of the velocities: Voo =2(Vo +V) =3(12.5+25.0 m/s) =
6. (d) Use the average velocity to find the distance: d, =v,,,t=(6.25 m/s)(3.115) =

7. Use the average velocity to find the distance: d, =v,,t=(18.8m/s)(3.11s)=

Insight: The distance traveled is always the average velocity multiplied by the time. This is a consequence of the
definition of average velocity.
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47. Picture the Problem: Measurements taken from a video of a sled traveling down an icy slope can be used to determine
the average speed and the acceleration of the sled.

Strategy:Create anx-versus-t plot using a spreadsheet, or plot the individual values by hand using graph paper. Use the
known x and t information to determine the average velocity over the specified time interval. Use either the spreadsheet

features or the equation x =X, +Vv,t+1at” to determine the average acceleration of the sled.

8
Solution: 1. (a) Use a spreadsheet or 7
similar program to create the plot shown at -~ B 5
right. The average velocity of the § 5 3¢ - 0.0224 /
sledbetween 0.25 and 1.3 s is equal to the g 4 p* 1
slope of a straight line drawn from N 3 =
itsposition at t =0.25 s and that at t =1.3 s _'-f > =
as shown. 0 ooV
- ’0 05 1 15 2
Fime, 1 (s)
2.(b) Draw a smooth curve to represent From the plot, x, *0.15m and x, = 2.5m
the sled data, and use the smooth curve AX 25-015m
to determine the approximate average Vo = =T Aol
) At 1.3-0.25s
speed:
3. Check your answer using the % =(—0.0093 m)+(—0.0224 m/s)(0.25 s)+(1.4243 m/s* ) (0.25 s)°
least-squares regression from —0074m

the spreadsheet: ,
X =(~0.0093 m)+(-0.0224 m/s)(1.3 5)+(1.4243 m/s” ) (1.3 5)

=237m
_AX X% —X 237-0.074m

vV, =—= =2.19m/s .. confirmed
Attt 13-0.25s

4.(c) Calculate the average X=X, +V,t +§at2 = 0+O+§at2
acceleration of the sled from the 2% 2(8.8 m)
equation, X=X, +Vv,t+iat?: :?:W:
5. Check your answer using the least- . :
Y g 1a=1.4243m/s* = a=2.8486 m/s* .. confirmed

squares regression from the spreadsheet:

Insight:Spreadsheet software usually includes powerful tools like regression to analyze data like these.

48. Picture the Problem: A child slides down the hill in a straight line with constant positive acceleration.

Strategy: Use the known acceleration and times to determine the positions of the child. In each case x, and v, are

zero.
Solution: 1. (a) Calculate her position: X=X, +Vot+1at’ =0+0+1(1.6 m/s*)(L.0 s)’ =[0.80 m
2. (b) Calculate her position: X=X +V t+iat’ = O+O+%(l.6 m/sz)(Z.O s)’ =
3. (c) Calculate her position: X=X +V t+iat’ = O+O+%(l.6 m/sz)(S.O s)’ =[7.2m

Insight:Her position varies with the square of the time because of her constant acceleration.
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49. Picture the Problem: Passengers on the Detonator ride accelerate straight downward.

Strategy: Use the known initial and final velocities and the elapsed time to find the acceleration.

vV, —V. 45 -0 mi/h
Solution: Calculate the acceleration: a= fAt L= ( > )>< 0'44_7”:“/5 = -9.1 m/s?
2s mi

Insight: The passenger’s acceleration is just less than that for a free-falling object. What a thrill!

50. Picture the Problem: Jules Verne’sColumbiadspaceship accelerates from rest down the barrel of the cannon.

Strategy: Employ the relationship between acceleration, displacement, and velocity (Equation 2-12) to find the
acceleration.

2 2

v2—v2 (12000 yd/s x 3 ft/yd x 0.305 m/ft)’ —0? —
Solution: Calculate th leration: a= e =|2.8x10° m/s
olution alCulate the acceleration 2AX 2(700 ftx0.305 m/ft) _

Insight: An acceleration this great would tear the occupants of the spacecraft apart! Notice that the equation
V2 = v§ +2aAxis a good choice for problems in which no time information is given or requested.

51. Picture the Problem: An Escherichia coli bacterium accelerates from rest in the forward direction.

Strategy: Employ the definition of acceleration to find the time elapsed, and the relationship between acceleration,
displacement, and velocity (Equation 2-12) to find the distance traveled.

Solution: 1. (a) Calculate the time to accelerate: t= V=Y _ 1125;0 ,ur/n/zs =10.077 s
a um/s

V-2 (12 pmis)’ -0

2. (b) Calculate the displacement: AX = = =10.46 um
(b) p -

2(156 pm/s®)

Insight: The accelerations are tiny but so are the bacteria! The average speed here is about 3 body lengths per second if
each bacterium were 2 um long. If this were a human that would be 6 m/s or 13 mi/h, much faster than we can swim!

52. Picture the Problem: Two cars are traveling in a
opposite directions.

Strategy: Write the equations of motion based upon O e 6 il
Equation 2-11, and set them equal to each other to
find the time at which the two cars pass each other.

I
0.0 km

Solution: 1. (a) Write an equation for the , —
position of car 1, which is traveling east and X, =Xy +Vo, t+1a,t =|x, =(20.0 mis)t+1(2.5 m/s® )t
speeding up. Let east be the positive direction:

2. Write an equation for the position of car 2,
which is traveling west but slowing down, X, =Xy, +Vp, t+1a,t% =[x, =100 m—(30.0 m/s)t+§(3.2 m/sz)t2
which means it is accelerating toward the east:

3. (b) Set x, =x, and solve for t: (20.0 m/s)t+(1.25 m/s® )t* =100 m—(30.0 m/s)t + (1.6 m/s® )t*
0=100-50t +0.35t°
,_50% \/50” —4(0.35)(100)
0.70

Insight:We chose smaller of the two roots, which corresponds to the first time the cars pass each other. The larger
acceleration of car 2 means that it’ll come to rest, speed up in the positive direction, and overtake car 1 att = 141 s.

=2.03 1415=[2.05]
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53.

54.

55.

56.

Picture the Problem: A meteorite accelerates from a high speed to rest after impacting the car.

Strategy: Employ the relationship between acceleration, displacement, and velocity (Equation 2-12) to find the
acceleration.

[v2—vg| |0* (130 mys)’
2lAY  2(0.22m)

=(3.8x10* m/s?

Solution: Calculate the acceleration: |a| =

Insight: The high stiffness of steel is responsible for the tremendous (negative) acceleration of the meteorite.

Picture the Problem: A rocket accelerates straight upward.

Strategy: Employ the relationship between acceleration, displacement, and time (Equation 2-11) to find the
acceleration. Because the rocket was at rest before blast off, the initial velocity v, is zero, and so is the initial position

X,-Once the acceleration is known, we can use the constant acceleration equation (Equation 2-7) to find the speed.

Solution: 1. (a) Write out the position vs. time equation: X=X, +V, t+1at?

: 2x  2(91m)
2. Let x, =v, =0and solve for acceleration: a= ree W =|23 m/s® upward

3. (b)Calculate the final speed: v=0+at=(23.2m/s*)(2.85)=[65m/s

Insight:The position vs. time equation simplifies considerably if the initial position and the initial velocity are zero.

Picture the Problem: You drive in a straight line and then slow down to a stop.

Strategy: Employ the relationship between acceleration, displacement, and velocity (Equation 2-12) to find the
displacement. Equation 2-12 is a good choice for problems in which no time information is given or requested. In this
case the acceleration is negative because the car is slowing down.

2 2 2 2 2 12.0 m/ 2
A% 0w v ( s) _
2a 2a 2a 2(-35m/s)

Solution: 1. (a) Calculate the displacement:

2. (b)Because velocity is proportional to the square root of displacement, cutting the distance in half will reduce the
velocity by /2, not 2. Therefore the speed will be [greater than 6.0 m/g after traveling half the distance.

2
3.(c)Calculate the spe.ed after m ¥ +a vO Vo _120m/s O m/s 849 TS /
half the displacement:

Insight:For constant acceleration, the velocity changes linearly with time, but nonlinearly with distance.

Picture the Problem: You drive in a straight line and then slow down to a stop.

Strategy:Use the constant acceleration equation of motion (Equation 2-7) to find the time. Once the time is known, we
can use the same equation to find the speed. In this case, the acceleration is negative because the car is slowing down.

Solution: 1. (a) Calculate the stopping time: t=Y—Y% 03 26 T/S
a -32ms’

2. (b)Because the velocity varies linearly with time for constant acceleration, the velocity will be half the initial velocity
when you have braked for half the time. Therefore the speed after braking 2.5 s will be equal to [8.0 m/s,

3. (c)Calculate the speed after half the time: v=yv,+at=16 m/s +(—3.2 m/sz)(2.5 s)=[8.0m/s

Insight:For constant acceleration, the velocity changes linearly with time, but nonlinearly with distance.
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57.

58.

59.

Picture the Problem: A chameleon’s tongue accelerates in a straight line until it is extended to its full length.

Strategy:Employ the relationship between acceleration, displacement, and time (Equation 2-11) to find the
acceleration. Let the initial velocity v, and the initial position x, of the tongue each be zero.

. . 2(0.16 m
Solution: 1. (a) Let x, =V, =0and calculate the acceleration: a= % = % =
0.10s

2. (b)Because the displacement varies with the square of the time for constant acceleration, the displacement will be less
than half its final value when half the time has elapsed. Most of the displacement occurs when the tongue's speed is
greatest, late in the time interval. Therefore we expect the tongue to have extended [less than 8.0 cm| after 0.050 s.

3. (c) Calculate the position of the tongue after half the time: x=21at” =1(32 m/s?)(0.050 s)’ =

Insight: For constant acceleration, the displacement changes nonlinearly with both time and velocity.Notice that the
acceleration of the chameleon’s tongue is over three times the acceleration of gravity!

Picture the Problem: David Purley travels in a straight line, slowing down at a uniform rate until coming to rest.

Strategy: Use the time-free relationship between displacement, velocity, and acceleration (Equation 2-12) to find the
acceleration.

2
., 0°—(173kmn x 2278
Solution: Calculate the acceleration: a= V=% _ 1 km/h
’ ' 2AX 2(0.66 m)
, 1.00g
a=-1800 m/s’x——=— =-180g = |a|=(180g

9.81 m/s?

Insight: Mr. Purley was lucky to escape death when experiencing an acceleration this large! We’ll learn in Chapter 5
that a large acceleration implies a large force, which in this case must have been applied to his body in just the right way
to produce a non-lethal injury.

Picture the Problem: A boat slows down at a uniform rate as it coasts in a straight line.

Strategy:Because the initial and final velocities are known, the time can be determined from the average velocity and
the distance traveled. Then use the constant acceleration equation of motion (Equation 2-7) to find the acceleration and
the time-free equation (Equation 2-12) to find the velocity after the boat had coasted half the distance.

Solution: 1. (a) Use the displacement and the . Ax 12m B
average velocity to find the time elapsed: t= 1(V+vy) h 1(1.6+2.6 mis) -

v-v, 1.6-2.6m/s .
2. (b) Apply the definition of acceleration: a= ¢ = =|=0.175 m/s®| where the negative

t 57s
sign means opposite the direction of motion.

3. (c) Calculate the velocity after coasting 6.0 m V2 =V +2aAx
using the time-free equation of motion:
J a V= \/(2.6 mis)’ +2(-0.175 m/s” ) (6.0 m) =

Insight:For constant acceleration, the velocity changes linearly with time but nonlinearly with distance. That is why the
2.2-m/s velocity after coasting 6.0 m is greater than the 2.1-m/s average speed the boat has over the entire 12-m distance
it coasted.
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60.

61.

Picture the Problem: Amodel rocket accelerates straight upward at a constant rate.

Strategy:Because the initial and final velocities are known, the time can be determined from the average velocity and
the distance traveled. The constant acceleration equation of motion (Equation 2-7) can then be used to find the
acceleration. Once that is known, the position of the rocket as a function of time is given by Equation 2-11, and the
velocity as a function of time is given by Equation 2-7.

Solution: 1. (a) Use the displacement and the AX 42 m

. . . t= = =0.3235=]0.32 s
average velocity to find the time elapsed: L(v+v,)  3(0+26.0 mis) 032 ]

V-V 0-
2. (b) Apply the definition of acceleration: a= " 2 — 26003203 m’s =[80 m/s’
.323s

3. (C)Find the rocket’s height, assuming x, =v, =0 : x=1at? = %(80 m/s? )(0.10 3)2 =
4. Find the velocity of the rocket, assuming v, =0 v=0+at= (80 m/sz)(o.lo 5)=

Insight:Model rockets accelerate at very large rates, but only for a very short time. Still, even inexpensive starter
rockets can reach 1500 ft in altitude and can be great fun to build and launch!

Picture the Problem: The infamous chicken dashes toward home plate while playing baseball, and then slides along a
straight line and comes to rest.

Strategy:Because the initial and final velocities and the time elapsed are known, the acceleration can be determined
from the constant acceleration equation of motion (Equation 2-7). The distance traveled can be found from the average
velocity and the time elapsed (Equation 2-10).

. . v—v, 0-5.7m/s .
Solution: 1. (a) Calculate the acceleration: a= " 0 — 125 = , where the negative sign

means opposite the direction of motion, or ftoward third base|.

AX=21(v+V,)t=21(0+57 m/s)(1.2s) =

2. (b) Use the average velocity and time
to find the distance the chicken slides:

Insight:If the dirt had accelerated the chicken at a lesser rate, the chicken would have had nonzero speed as it crossed
home plate. A larger magnitude acceleration would stop the chicken before reaching the plate, and it would be out!
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62. Picture the Problem: The distance-versus-time plot at right

shows how a bicyclist can overtake his friend by pedaling at constant

acceleration.

Strategy: To find the time elapsed when the two bicyclists meet, we must
set the constant velocity equation of motion of the friend (Equation 2-8)
equal to the constant acceleration equation of motion (Equation 2-11) of 0
the bicyclist. Once the time is known, the displacement and velocity of

the bicyclist can be determined from Egs. 2-10 and 2-7, respectively.

Solution: 1. (a) Set the two equations of
motion equal to each other. For the friend,
use Equation 2-8 with x, =0 and for the

bicyclist, use Equation 2-11 with x, =0 and v, =0:

2.Solve the two equations for t by rearranging
them into a quadratic expression:

3. Now use the quadratic formula:

40 £
30 /
friend ~y
_.—-"‘/
ull L~ bicglfclist
40

Time, ¢ (s}

0.0 20 8.0 8.0

Xfriend = Xbicyclist

Viienal = 0+ 0+ 3 8 (1-2)°

friend

Vfriendt =

%abicyclist (tz —4t+ 4)

friend

0=t —|:4+2 }t+4:t2—{4+
ablcycllst

0=t>-6.92t+4

2.4 m/s?

2(35 m/s)}t+4

6.922 —4(1)(4)
2

+6.92 +
= =6.3, 0.64s

4. We choose the larger root because the time must be greater than 2.0 s, the time at which the bicyclist began pursuing
his friend. The bicyclist will overtake his friend after his friend passes him.

5. (b)Use the known time to find the position:

6. (c) Use Equation 2-7 to find Vyicycist. Keep in mind

that v, =0 and that the bicyclist doesn’t begin
accelerating until two seconds have elapsed:

Xfriend = V t= (35 m/S)( )
Xbicyclist =2 ablcycllsl (t 2 = %(2 m/32 )(4 3 S - 22 m

V =0+ 8y (t—2) = (2.4 m/s*)(6.3-2.0 5) =[10 nvs]

Insight:Even a smaller acceleration would allow the bicyclist to catch up to the friend, because the speed is always
increasing for any nonzero acceleration. Hence the bicyclist’s speed would eventually exceed the friend’s speed and the

two would meet some time after that.
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63.

64.

Picture the Problem: The velocity-versus-time plot at right indicates the
velocity of a car as it accelerates in the forward direction, maintains a v
constant speed, and then rapidly slows down to a stop.

Strategy: The distance traveled by the car is equal to the area under the
velocity-versus-time plot. Because the distance traveled is known to be
22 m, we can use that fact to determine the unknown speed V. Once we
know the velocity as a function of time we can answer any other question
about its motion during the time interval.

Velocity (m./s)

o 2 4 & 5
Time (]
Solution: 1. (a) Determine the area under the curve
by adding the area of the triangle from 0 to 4 s, the Xx=1(4-0s)V+(6-45s)V+1(8-6s)V=(5s)V
rectangle from 4 to 6 s, and the triangle from 6 to 8 s.

2. Set x equal to 22 m and solve for V: x=(5.08)V=22m =V =(22/50) m/s=4.4m/s
3. Now find the area of the triangle from 0 to 4 s: X =+(4-05)(4.4mis) =

4. (b)Find the area of the triangle from 6 to 8 s: X, :%(8—6 s)(4.4 m/s) :

5. (c) We found the unknown speed in step 2: V=

Insight: The velocity-versus-time graph is a rich source of information. Besides velocity and time information, you can
determine acceleration from the slope of the graph and distance traveled from the area under the graph.

Picture the Problem: The velocity-versus-time plots of the car and the vim/s)
truck are shown at right. The car begins with a positive position and a

negative velocity, so it must be represented by the lower line. The truck 10 truey,
begins with a negative position and a positive velocity, so it is represented 5 \

by the upper line.

Strategy: The distances traveled by the car and the truck are equal to the
areas under their velocity-versus-time plots. We can determine the
distances traveled from the plots and use the known initial positions to
find the final positions and the final separation.

Solution: 1. Findthe final position of the
truck. The truck’s displacement AX, Yook = Xouruk + AXuge =(—35M)+3(2.5-05)(10 m/s)=—-225m

is the area under its v vs. t graph:

2.Find the final position of the car. The

car’s displacement AX, is the area Xear = Xo.car + A% =(15M)+3(3.5-05)(-15 m/s)=-11.25m
under its v vs. t graph:
3. Now find the separation: X — X =(—11.25 m)—(—22.5 m) =

Insight: The velocity-versus-time graph is a rich source of information. Besides velocity and time information, you can
determine acceleration from the slope of the graph, and distance traveled from the area under the graph. In this case, we
can see the acceleration of the car (4.29 m/s®) has a greater magnitude than the acceleration of the truck (—4.00 m/s?).
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65.

66.

Picture the Problem: Penguins slide down three different frictionless ramps, A, B, and C. The distance along each
ramp and the average sliding times are recorded.

Strategy: Use the relationship between distance, acceleration, and time (Equation 2-11) to determine the accelerations
of the penguins. Then use a=gsin@d to determine the angle of inclination & for each ramp.

Solution: 1. (a)Write an expression for the
acceleration, assuming that x, =v, =0:

. i i 2(4.09m
2. Calculate the acceleration of penguins 8, - 2%, 2( ) _ 7 1ms

that slide along ramp A: 2 - (219 S)z

. Calculate th leration of i 2(1.96 m
3. Calculate the acceleration of penguins aBzzﬁ: ( )=3.36m/32

that slide along ramp B: {2 (108 S)z

x=0+0+1at’® = a=2x/t’

4. Calculate th leration of i 2(1.08 m
Calculate the acceleration of penguins 2 _2x _2( ) _ T

that slide along ramp C: {2 (0.663 S)z

5. (b) Write an expression for the angle of

) . a
incline o: a=gsing :>0:sml(—j

g9

>
I

6. Calculate the angle of incline for ramp A:

2
, —sin [ﬂ]z

9.81 m/s’
2
7. Calculate the angle of incline for ramp B: 0, =sin™ M =|20.0°
9.81 m/s
2
6. Calculate the angle of incline for ramp C: 0, = sinl(%j =

Insight: Along a steeper ramp there is a greater component of gravitational force that is parallel to the ramp, resulting in
a larger acceleration.

Picture the Problem: Two balls are each thrown with speed v, from the same initial height. Ball 1 is thrown straight
upward and ball 2 is thrown straight downward.

Strategy:Use the known set of kinematic equations that describe motion with constant acceleration to determine the
relative speeds of balls 1 and 2 when they hit the ground.

Solution: 1. Solve Equation 2-12 for v;, ~ -
assuming the ball is thrown upward with V= \/Vo +2(-g)Ax = \/Vo —2gAx
velocity v, :

2. Solve Equation 2-12 for v,, assuming the ball
is thrown downward with velocity v, : V= \/(—Vo )2 +2(-g)Ax = «M —20gAX

3. By comparing the two expressions for v above we can conclude that the best answer is |B. The speed of ball 1 is equall
lto the speed of ball 2|

Insight:In a later chapter we’ll come to the same conclusion from an understanding of the conservation of mechanical
energy. The balls have the same speed just before they land because they both have the same downward speed when
they are at the level of the roof. Ball 2 simply starts off with the speed v, downward. Ball 1 travels upward initially, but

when it returns to the level of the roof it is moving downward with the speed v, just like ball 2.
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67.

68.

69.

70.

Picture the Problem: A cliff diver drops from rest, picking up speed with the acceleration of gravity.

Strategy:Convert the speed in mi/h to m/s, and then solve Equation 2-7 for the time required for the cliff diver to reach
that speed when she accelerates at 9.81 m/s%.

Solution: 1. Convert v to units of m/s?; 6OEXL/S_ =26.8 m/s
h  2.24 mi/h
2.Solve Equation 2-7 for the time: v=V,+gt=0+gt
v  26.8m/s
=—=""""7_1275
g 9.81m/s’ 274

Insight:This is significantly less than the 3.5 s required for a powerful car to achieve 60.0 mi/h from rest.

Picture the Problem: A juggler throws a ball straight upward and later catches it at the same height it was thrown.

Strategy: Use the known acceleration of gravity (9.81 m/s?) and Equation 2-7 to find the initial speed of the ball,
assuming by symmetry that the final speed is the same as the initial speed, except the final velocity is downward
(negative).

Solution: Solve Equation 2-7 -V, =V, —gt =>gt=2y,
for the initial velocity: v, =igt= %(9.81 m/sz)(3.2 s) _

Insight: This speed is equivalent to 35 mi/h, a reasonably easy throw for an accomplished juggler.

Picture the Problem: Snowboarder Shaun White soars straight upward a distance 6.4 m above the rim of a half-pipe.

Strategy:Because the height of the snowboard and rider is known, the time-free equation of motion (velocity in terms
of displacement, Equation 2-12) can be used to find the takeoff speed.

Solution: Solve the time-free 2 2 2
equation of motion for v, : Vo = V" ~29Ax \/0 (-9.81 m/s*)(6.4 m)

Insight: That speed is about 25 mi/h straight upward! Olympic snowboarders must be very athletic as well as acrobatic
to perform thefeats we witness during the Games.

Picture the Problem: A gull drops aclam shell, which falls from rest straight down under the influence of gravity.

Strategy:Because the distance of the fall is known, use the time-free equation of motion (velocity in terms of
displacement, Equation 2-12) to find the landing speed.

Solution: Solve the time-free equation of
motion for v. Let v, =0 and let downward V= ng +2gAX = \/02 + 2(9.81 m/sz)(17 m) =

be the positive direction.

Insight: That speed (about 41 mi/h) is sufficient to shatter the shell and provide a tasty meal!
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71.

72.

73.

74.

Picture the Problem: A volcano launches a lava bomb straight upward. It slows down under the influence of gravity,
coming to rest momentarily before falling downward.

Strategy:Because the acceleration of gravity is known, the constant acceleration equation of motion (velocity as a
function of time, Equation 2-7) can be used to find the speed and velocity as a function of time. Let upward be the
positive direction.

Solution:1. (a) Apply Equation 2-7 oyt _ 2 _
directly with a —g: V=V, —gt=28m/s —(9.81m/s*)(2.0)=
2. (b) Apply Equation 2-7 directly with a = —g: V=V, -gt=28m/s —(9.81 m/sz)(3.0 s)=

3. The positive sign for the velocity in part (a) indicates that the lava bomb is traveling upward, and the negative sign
for part (b) means it is traveling downward.

Insight: We can see the lava bomb must have reached its peak between 2.0 and 3.0 seconds. In fact, it reached it at
t=(v-v,)/a=(0-28m/s)/(-9.81m/s*)=2.85s.

Picture the Problem: Volcanic material on lo travels straight upward, slowing down under the influence of gravity
until it momentarily comes to rest at its maximum altitude.

Strategy:Because the maximum altitude is known, use the time-free equation of motion (velocity in terms of
displacement, Equation 2-12) to find the initial velocity. Let upward be the positive direction, so that a = —1.80 m/s*.

Solution: Solve the time-free Vy =\V2 —2aAX = \/02 —2(-1.80 m/s*)(3.00x10° m)

equation of motion for v, :
=1040 m/s =|[1.04 km/s

Insight: On Earth that speed would only hurl the material to an altitude of 55 km, as opposed to 300 km on lo. Still,
that’s a very impressive initial velocity! It is equivalent to the muzzle velocity of a bullet, and is 2.5 times the speed of
sound on Earth.

Picture the Problem: A ruler falls straight down under the influence of gravity.

Strategy:Because the acceleration and initial velocity (zero) of the ruler are known, use the position as a function of
time equation of motion (Equation 2-11) to find the time.

Solution: Solve Equation 2-11 for t. Let v, =0 2(0.052 m
q o t:\/ZAX: ’9(81 /2):
g .81 m/s

and let downward be the positive direction.

Insight: This is a very good reaction time, about half the average human reaction time of 0.20 s.

Picture the Problem: A hammer drops straight downward and passes by two windows of equal height.

Strategy: Use the definition of acceleration together with the knowledge that a falling hammer undergoes constant
acceleration to answer the conceptual question.

Solution:1. (a) The acceleration of the hammer is a constant throughout its flight (neglecting air friction) so its speed
increases by the same amount for each equivalent time interval. However, it passes by the second window in a smaller
amount of time than it took to pass by the first window because its speed has increased. We conclude that increase in
speed of the hammer as it drops past window 1 is the increase in speed as it drops past window 2.

2. (b) The best explanation (see the discussion above) is |l11. The hammer spends more time dropping past window|
.Statement 1 is false because acceleration is independent of speed, and statement 11 is false because acceleration is rate
of change of speed per time not distance.

Insight:If the hammer were thrown upward, its speed decrease as it passes window 2 would be less than the decrease in
its speed as it passes window 1, again because it is traveling slower as it passes window 1.
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76.

77.

Picture the Problem: A hammer drops straight downward and passes by two windows of equal height.

Strategy:The velocity-versus-time graph contains two pieces of information: the slope of the graph is the acceleration,
and the area under the graph is the distance traveled. Use this knowledge to answer the conceptual question.

Solution: 1. (a) The two windows have the same height, so the hammer travels the same distance as it passes each
window. We conclude that the area of the shaded region corresponding to window 1 is the area of the shaded
region corresponding to window 2.

2. (b) The best explanation (see the discussion above) is |I1. The windows are equally tall. Statement I is true, but not
relevant, and statement 11 is true, but not relevant.

Insight:1f the hammer were thrown upward, the velocity-versus-time graph would have a negative slope, but the shaded
areas corresponding to each window would still be equal, with the tall and narrow shaded area for window 2 on the left
(because the hammer passes it first) and the short and wide shaded area for window 1 on the right.

Picture the Problem: Two balls are thrown upward with the same initial speed but at different times. The second ball
is thrown at the instant the first ball has reached the peak of its flight.

Strategy: The average speed of the ball is smaller at altitudes above 1h,so that it spends a greater fraction of time in
that region than it does at altitudes below h. Use this insight to answer the conceptual question.

Solution: The second ball will reach 1h on its way up sooner than the first ball will reach 1 on its way down because
the speed of each ball is greater at low altitudes than at high altitudes. We conclude that the two balls pass at an altitude

that is .

Insight:A careful analysis reveals that the two balls will pass each other at altitude of 2h.

Picture the Problem: Several swimmers fall straight down from a bridge into the Snohomish River.

Strategy: The initial velocities of the swimmers are zero because they step off the bridge rather than jump up or dive
downward. Use the equation of motion for position as a function of time and acceleration, realizing that the acceleration
in each case is 9.81 m/s®. Set X, =0 and let downward be the positive direction for simplicity. The known

acceleration can be used to find velocity as a function of time for part (b). Finally, the same equation of motion for part
(a) can be solved for time in order to answer part (c).

Solution: 1. (a) Calculate the fall distance: X=X, +Vpt+1at’ =0.0 m+0+1(9.81 m/s*)(1.5s)°
X =
2. (b) Calculate the final speed if v, =0: v=y,+at= 0+(9.81 m/sz)(1.5 s)=[15m/s
3. (c) Calculate the fall time for twice the distance: t 2(11m x2) =[2.19]
' ' _\f a 9 981 m/s’

Insight: The time in part (¢) doesn’t double because it depends upon the square root of the distance the swimmer falls.
If you want to double the fall time you must quadruple the height of the bridge!
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79.

80.

Picture the Problem: Water in the highest fountain is projected with a large upward velocity, rises straight upward, and
momentarily comes to rest before falling straight back down again.

Strategy: By analyzing the time-free equation of motion (Equation 2-12) with v = 0 (because the water briefly comes to
rest at the top of its trajectory),we can see that the initial velocity v, increases with the square root of the fountain

height. The known fountain height and acceleration of gravity can also be used to determine the time it takes for the
water to reach the peak using the position as a function of time (Equation 2-11).

Solution: 1. (a) Calculate v, assuming the 0% =V —2gAX

water comes to rest (v =0) at the top: v, = 29X = \/2(9.81 m/sz)(560 ft x0.305 m/ft) =
2. (b) Calculate the time required for the fo [2X 2(560 ft=0.305 m/ft)

water to reach the top of the fountain: “Na 9.81 m/s? =

Insight: The speed of 58 m/s corresponds to 130 mi/h. The fountain is produced by a world-class water pump!

Picture the Problem: A basketball bounces straight up, momentarily comes to rest, and then falls straight back down.

Strategy:If air friction is neglected, the time it takes the ball to fall is the same as the time it takes the ball to rise.
Therefore, the maximum height of the ball is also the distance a ball will fall for 1.6 s. Use the equation of motion for
position as a function of time and acceleration, realizing that the acceleration in each case is 9.81 m/s%. Set X, =V, =0

and let downward be the positive direction for simplicity.

Solution: Calculate the maximum height: X=X, +V,t+2at’ =0.0 m+0+1(9.81m/s’)(1.6 5)" =12.6 m=[13 m|
Insight: The 12.6-m height corresponds to 41 ft. The ball must have rebounded from the floor with a speed of 15.7 m/s
or 35 mi/h. The player was pretty angry!

Picture the Problem: A baseball glove rises straight up, momentarily comes to rest, and then falls straight back down.

Strategy: The glove will land with the same speed it was released, neglecting any air friction, so the final velocity
v =—6.5m/s. We can use the equation of motion for velocity as a function of time (Eq. 2-7) to find the time of flight.

(VY% (-6.5)—(6.5) m/s _[33]

Solution: 1. (a) Calculate the total time of flight

a -9.81 m/s®
. . . v-v, 0-6.5m/s
2. (b) Calculate the time to reach maximum height: t= R

Insight: Throwing the glove upward with twice the speed will double the time of flight, but the maximum height
attained by the glove (2.15 m for a 6.5 m/s initial speed) will increase by only a factor of 2.
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81.

82.

Picture the Problem: Two balls fall straight down under the influence of gravity. The first ball falls from rest but the
second ball is given an initial downward velocity.

Strategy:Because the fall distance is known in each case, use the velocity in terms of displacement equation of motion
(Equation 2-12) to predict the final velocity. Let downward be the positive direction for simplicity.

Solution: 1. (a) The speed increases linearly with time but nonlinearly with distance. Because the first ball has a lower
initial velocity and hence a lower average velocity, it spends more time in the air. The ffirst (dropped) ball | will
therefore experience a larger increase in speed.

2. (b) First ball: Solve Eq. 2-12 v=1J0? +2gAx = \/2(9.81 m/s?)(30.5 m) = 24.5 m/s

for v, setting v, =0

3. Second ball: Solve Eq. 2-12 for v: v=V2 +2gAX = \/(11.2 mis)’ +2(9.81 m/s” )(30.5 m) = 26.9 ms
4. Compare the Av values: Av, =24.5-0 m/s =|24.5 m/s|for the first ball and

Av, =26.9-11.2 m/s =|15.7 m/s| for the second ball.

Insight: The second ball is certainly going faster, but its change in speed is less than the first ball.

Picture the Problem: An arrow rises straight upward, slowing down due to the acceleration of gravity.
Strategy:Because the position, time, and acceleration are all known, we can use the equation of motion for position as a
function of time (Equation 2-11) to find the initial velocity v, . The same equation could be used to find the time
required to rise to a height of 15.0 m above its launch point. Let the launch position be x, =0 and let upward be the
positive direction.

Solution: 1. (a) Calculate v, froma x—1lat? 30.0m —1(-9.81m/s*)(2.00 s)’

rearrangement of Equation 2-11: 0 t 2.00s

=[24.8 ms]

2. (b) Solve Equation 2-11 with x=15.0m: ~ 15.0 m=(24.8 m/s)t—%(9.81 m/sz)t2
0=(-4.905 /s )t* +(24.8 m/s)t —15.0 m

_ b b7 dac _ 248+ ,/(248)° ~4(-4905)(-15.0)

2a -9.81
t=1]0.702 s|, 4.36 s

Insight: The second root of the solution to part (b) corresponds to the time when the arrow, after rising to its maximum
height, falls back to a position 15.0 m above the launch point.

3. Now use the quadratic formula: t
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83.

84.

Picture the Problem: Abook accelerates straight downward and hits the floor of an elevator that is descending at
constant speed.

Strategy: The constant speed motion of the elevator does not affect the acceleration of the book. From the perspective
of an observer outside the elevator, both the book and the floor have an initial downward velocity of 3.0 m/s. Therefore,
from your perspective the motion of the book is no different than if the elevator were at rest. Solve the position as a
function of time and acceleration equation (Equation 2-11) for t, setting v, =0 and letting downward be the positive

direction. Then use velocity as a function of time (Equation 2-7) to find the speed of the book when it lands.

Solution: 1. (a) Solve Equation 2-11 2x _ |2(12m)
t= |—=,]—=% = -0.49 S
for t, setting x, =v, =0 g 9.81 m/s?

2. (b) Apply Equation 2-7 to find v: V=V, +gt= O+(9.81 m/sZ)(O.49 s)= [4.8 mis]

Insight: The speed in part (b) is relative to you. Relative to the ground the velocity of the book is 4.8 + 3.0 =7.8 m/s in
the downward direction.

Picture the Problem: A camera has an initial downward velocity of 2.3 m/s when it is dropped from a hot-air
balloon.The camera accelerates straight downward before striking the ground.

Strategy:One way to solve this problem is to use the quadratic formula to find t from the position as a function of time
and acceleration equation (Equation 2-11). Then the definition of acceleration can be used to find the final velocity.
Here’s another way: Find the final velocity from the time-free equation of motion (Equation 2-12) and use the
relationship between average velocity, position, and time (Equation 2-10) to find the time. We’ll therefore be solving
this problem backwards, finding the answer to (b) first and then (a). Letupward be the positive direction, so that

vV, =—23m/s and Ax=x—x, =0-41m=-41m.

Solution: 1. (a) Solve Equation 2-12 forv: v= 1/vg +2gAX = \/(—2.3 m/s)2 + 2(—9.81 m/sz)(—41 m) =—28 m/s

2. Solve Equation 2-10 for t: t= AX —41m =[2.7s

L(v+vy) £(-28-2.3mis)

3. (b) We found v in step 1: V=

Insight: There is often more than one way to approach constant acceleration problems, some easier than others. In this
case our strategy allowed us toavoid using the quadratic formula to find t.
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85. Picture the Problem: A model rocket rises straight upward, accelerating over a distance of 29 m and then slowing
down and coming to rest at some altitude higher than 29 m.

Strategy:Use the given acceleration and distance and the time-free equation of motion (Equation 2-12) to find the
velocity of the rocket at the end of its acceleration phase, when its altitude is 29 m. Use that as the initial velocity of the
free-fall stage in order to find the maximum altitude (Equation 2-12 again). Then apply Equation 2-12 a third time to
find the velocity of the rocket when it returns to the ground. The given and calculated positions at various stages of the
flight can then be used to find the elapsed time in each stage and the total time of flight.

Solution: 1. (a) Find the velocity at the end _ 2 _ [ 2 _
of the boost phase using Equation 2-12: Vooost = \/VO T20Ax = \/0 +2(12 ms )(29 m) =264 m's

2. Find the height change during the

2
boost phase using Equation 2-12 and a 02 =V —20A %y = AXgpy = ot
final speed of zero: 29
2
v,
3. Now find the overall maximum height: Prax = g + AXpp0q =29 M +;L;“
(26.4 m/s)’
—29m +—————~_=29+36 m=[65m]
2(9.81 m/s*)
4. (b)Apply Equation 2-12 once again V2 =V2 o —20AX
between the end of the boost phase and = > .
the point where it hits the ground: V= Voot —29AX = \/(26-4 m/s)” —2(9.81 m/s* )(—29 m)
=[36 m/s

5. (c) First find the duration of the boost b A 29 m PP
Ez:lijs;.mln)sze_;gg known positions and boost 3 (Vo + Voot ) +(0+26.4 m/s) =L
6. Now find the time for the rocket to t o Aot 36 m _97s
reach its maximum altitude from the end w %(Vb Y, ) B 1(26.4+0 mis) =
of the boost phase: oot e
7. Now find the time for the rocket to t = AX o _ 65m _36s

. down T - ===
fall back to the ground: %(Vtop +vgr0und) 1(0+36mis) =—
8. Sum the times to find the time of flight: toa = thoost 1 +lioun =2.2+2.7+3.65=[855

Insight:Notice how knowledge of the initial and final velocities in each stage, and the distance traveled in each stage,
allowed the calculation of the elapsed times using the relatively simple Equation 2-10, as opposed to the quadratic
Equation 2-11. Learning to recognize the easiest route to the answer is an important skill to obtain.
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86.

87.

Picture the Problem: The vertical position-versus-time plot of a flying X
squirrel is shown at right. The squirrel starts from rest and drops a
distance of x,=4.0 mint=1.10s. .
Strategy:Because the squirrel starts from rest and lands at x = 0, the §
equation of motion for position as a function of time (Equation 2-11) can &,
be solved to find the acceleration a. We expect the acceleration to be o
negative because the squirrel begins from a positive height and ends at a e
zero height. The negative slope of the plot also indicates the velocity of
the squirrel is downward and increasing in magnitude.

0] Time (s) E
Solution: 1. Solve the position as a function X=X +Vyt+iat’
of time equation for the acceleration a: —2x,

0=x,+0+iat® =

. 2 2(40m
2.Calculate the squirrel’s acceleration: a= N —u =

t*  (110s)

Insight:1f the squirrel did not have a patagium to slow its descent, its acceleration would be close to —9.81 m/s’.

Picture the Problem: The height-versus-time plot of a “high striker” plug 40 -
is shown at right. The plug starts with a high velocity and begins to slow //
down when it hits the bell after 0.60 s. 30

E Plug hits bell
Strategy: The average velocity is the distance traveled by the plug £ 20
divided by the time (Equation 2-10). Assuming there is no friction, the 32
time and free fall acceleration (—9.81 m/s®) can be used to find the change 10
in velocity (Equation 2-7).The initial velocity can then be determined /nusmmmw
from the change in velocity and average velocities by combining B0 a5 o od e b
Equations 2-7 and 2-9. ' imata sl
Solution: 1. (a) Find the average _X=X% _40-0m =
velocity using Equation 2-10: Vo ST T T060s
2.(b) Find the change in velocity using Eq. 2-7: AV=v-V, =at=(-9.81m/s*)(0.60s) =
3.(c)SolveEquation 2-7 for v, : v=y,+at —=v,=v-at
4.SolveEquation 2-9 forv: V, =3(V+V) =v=2v, -V,
5.Subst|tt_1te the expression for v into v =(2v,, v, ) -at
the equation for v, :
6.Now solve that expression for v, : Vo =1(2v, —at) = %[2(6.7 m/s)—(—9.81 m/sz)(0.60 s)}

v, =[9.6 ms|

Insight: There are several other ways of finding these speeds, including graphical analysis. Try measuring the slope of
the graph at the launch point and the point at which the plug hits the bell to find the initial and final speeds.
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88.

89.

90.

Picture the Problem: Chestnut A is dropped from rest.

When it has fallen 2.5 m, chestnut B is thrown downward NutB O
with an initial speed vgo. Both nuts land at the same time thrown

after falling 10.0 m. 2/€!\m

VBo =
Strategy: First find the time it takes for nut A to fall 2.5 m _\L? Nut A

branch™~

using the equation of motion for position as a function of 10.0m

time and acceleration (Equation 2-11). Also find the time
required for nut A to fall the entire 10.0 m. Subtract the
first time from the second to find the time interval over
which nut B must reach the ground in order to land at the
same instant as nut A. Then use Equation 2-11 again to
find the initial velocity vg o required in order for nut B to
reach the ground in that time.

Solution: 1. Find the time it takes for nut A to fall 2.5 m ﬂ 2 5 m
by solving Equation 2-11 for t and setting vao = 0. T 0. 81 m/s

g
2. Find the time it takes for nut A to fall the entire 2AX 2(10.0 m)
10.0 m: At = = > =1428s
g 9.81 m/s
t

3. Subtract the times to find the time over

Both land

O®

ground\

=0.714s

which nut B must reach the ground: oo = taom —tay =1.428-0714s =0.714 s
Ax—1gt? 10.0 m —1(9.81 m/s?)(0.714 s)
4. Solve Equation 2-11 for vg y: Vgo = 29% 00 _ 2( )( )
' {5 o 0.714 s

Vgo =10.5m/s =

Insight:In this problem we kept an additional significant figure than is warranted in steps 1, 2, and 3 in an attempt to get
a more accurate answer in step 4. However, if you choose not to do so, differences in rounding will lead to an answer of
10 m/s. The specified 2.5 m drop distance for nut A limits the answer to two significant digits, and because the answer
is right between 10 and 11 m/s, it could correctly go either way.

Picture the Problem: A rock accelerates from rest straight downward and lands on the surface of the Moon.

Strategy: Employ the relationship between acceleration, displacement, and velocity (Equation 2-12) to find the final
velocity.

Solution: Solve Equation 2-12 for velocity v: v= V2 +2aAx = \/02 +2(1.62 m/s®)(1.25 m) =

Insight: On Earth the rock would be traveling 4.95 m/s, but the weaker gravity on the Moon accelerates the rock only
about one-sixth as much as would the Earth’s gravity.

Picture the Problem: An elevator in the Taipei 101 skyscraper accelerates to its maximum speed.

Strategy: Because time information is neither given nor requested, the time-free equation for velocity in terms of
displacement (Equation 2-12) is the best choice for finding the displacement.

vi-v; (16 m/s)2 -0

2a 2(1.1 m/sz) =om

Solution: Solve Equation 2-12 for displacement: Ax =

Insight: The observatory elevators in Taipei 101 were the world’s fastest when installed, whisking passengers from the
fifth floor to the 89™-floor observatory, a distance of 369 m, in only 37 seconds. The 16.83 m/s maximum speed is
equivalent to 37.7 mi/h. The passengers are treated to a memorable ride!
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91.

92.

93.

94.

Picture the Problem: Water pouring through an ancient Strait of Gibraltar accelerates downward and impacts the water
surface below.

Strategy: Employ the relationship between acceleration, displacement, and velocity (Equation 2-12) to find the height
from which the water must fall so that its final velocity just before landing is 340 m/s.
: . . 2_\2 (340 m/s)’ —0?
Solution: Solve Equation 2-12 for velocity AX: Ax=L Yo _ ( °) =5900 m =
29 2(9.81m/s*)

Insight: This height corresponds to 3.7 miles or over 19,000 feet! With air resistance, however, an even higher altitude
would be required to obtain speeds this great.

Picture the Problem: A juggler throws a ball straight upward, it briefly comes to rest, and falls downward, returning to
the juggler’s hand.

Strategy: By symmetry the total time of flight is exactly twice the amount of time elapsed as the ball falls from rest
from its maximum height. Use this observation, together with the equation for position as a function of time (Equation
2-11) to find the maximum height of the ball above the juggler’s hand.

Solution: 1.Solve Equation 2-11 for x,, assuming that X=X, +V, t+1at?
the final position x =0 and initial speed v, =0: 0=%+0+1(-g)t? =x =1gt?
2.Substitute values to find the maximum height: X, =1(9.81m/s?)(1x0.98's)" =

Insight:You can show that the ball left the juggler’s hand with an upward velocity of 4.8 m/s, or about 11 mi/h.

Picture the Problem: Ball A is dropped from rest at the edge of a roof, and at the same instant ball B is thrown upward
from the ground with an initial velocity v, sufficient to reach the original location of ball A.

Strategy: Use an understanding of velocity and acceleration to answer the conceptual question. Let upward be the
positive direction.

Solution: 1. The velocity of ball A is because it is falling downward.

2. The acceleration of ball A is because gravity acts in the downward direction.
3. The velocity of ball Bis because it is traveling upward.

4. The acceleration of ball B is because gravity acts in the downward direction.

Insight: Acceleration is the rate of change of velocity, so acceleration can be zero when the velocity has a large
magnitude (for example, a car traveling along a highway at constant speed), and the velocity can be zero when the
acceleration has a large magnitude (for example, a ball at the top of its vertical flight). The acceleration of ball B is
always downward, even when its velocity is upward.

Picture the Problem: Two balls are released simultaneously. Ball A is
dropped from rest but ball B is thrown upward with an initial velocity v,.

Strategy: Use a correct interpretation of motion graphs to answer the
conceptual questions. Recall that the slope of a velocity-versus-time graph
is the acceleration.

Solution: 1. (a) The speed of ball A starts at zero and then increases
linearly with a slope of 9.81 m/s®>. The graph that corresponds to that \
description is jplot 3. . N =

&) me
2. (b) The speed of ball B starts at v, and then decreases linearly with a slope of —9.81 m/s?, equal in magnitude but
opposite in directionto the slope of ball A’s plot. The graph that corresponds to that description is plot2,.

Insight:Even if ball B were fired upward at an extremely high speed, its velocity-versus-time graph would still be linear
with a slope of —9.81 m/s?, but the line would begin very high on the speed axis of the graph.
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95.

96.

Picture the Problem: A plot of position vs. time yields information about
the average velocity of an object. \

Strategy: Use a correct interpretation of position-timeplots to answer the
conceptual questions. Recall that the slope of a position-versus-time graph
is the velocity. :

Solution: 1. (a) The average speed of the object is the magnitude of the — DTS /

2
slope of a line between the two points. The line between points 1 and 2 i
(dark solid line) has a steeper slope than the line between points 1 and 3 0
(light solid line). Therefore, the average speed for the time interval

between points 1 and 2 is |greater than| the average speed for the time
interval between points 1 and 3.

Position
VRN

2. (b) The average velocity of the object is the slope of a line between the two points. The line between points 2 and 4
(dark dashed line) has a smaller slope than the line between points 3 and 4 (light dashed line). Therefore, the average
velocity for the time interval between points 2 and 4 is the average velocity for the time interval between
points 3 and 4.

Insight: The negative slopes of the two solid lines indicate the velocity of the object is negative for those time intervals.
However, the question in part (a) asked about the speed, not the velocity, hence only the magnitude of theslopes was
considered.

Picture the Problem: A package falls straight downward, accelerating for 2.2 seconds before impacting air bags.

Strategy: Find the distance the package will fall from rest in 2.2 seconds by using Equation 2-11. Use the known
acceleration and time to find the velocity of the package just before impact by using Equation 2-7. Finally, use the
known initial and final velocities, together with the distance over which the package comes to rest when in contact with
the air bags, to find the stopping acceleration using Equation 2-12.

Solution: 1. (a) Find the distance the package _ 102 1 2 2
falls from rest in 2.2 s using Equation 2-11: AX=Vot+3gt =0+ 2(9'81 mfs )(2'2 s) _
2. (b) Find the velocity just Vi =V + gt = 0+(9.81 m/s?)(225) = — 48 mi/h!

before impact using Equation 2-7:

22 07 —(22mis)
3. (c) Solve Equation 2-12 for a: a=y % _ ( ) =|-320 m/s*| = -33g

2ax  2(0.75m)

Insight:Increasing the stopping distance will decrease the stopping acceleration. We will return to this idea when we
discuss impulse and momentum in Chapter 9.
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97. Picture the Problem: A plot of velocity vs. time yields information about
the acceleration of an object.

Strategy: Use a correct interpretation of motion graphs to answer the
conceptual questions. Recall that the slope of a velocity-versus-time graph
is the acceleration.

Velocity (m/s)

Solution: 1. (a) The acceleration of the object is the slope of the velocity-

. v—-v, 45-05m/
versus-time graph: a= 0 = m's = 0O 0.2 0.4 0.6 08 1.0

t—t, 1.0-0s

lime (s}
2. (b) The displacement is the area under the velocity-  Ax = area of bottom rectangle + area of triangle
versus-time curve: =(1.05)(0.50 m/s)+2(L.0s)(4.0 mis)=25m

3. The final position is the initial position plus the X=X, +Ax=120m +2.5m=
displacement:

4. () Use the known acceleration, initial velocity, and  y — X, +V, t+1at?
initial position to find the final position at t =5.00 s: )
=(12.0 m)+(0.50 m/s)(5.00 ) +(4.0 m/s*)(5.00 s)

x=(64.5m|

Insight:Equation 2-11 can also be used to find the final position in part (b), instead of determining the area under the
velocity-versus-time graph: x = x, +V, t++at? =(12.0 m)+(0.50 m/s)(1.00 s)+4(4.0 m/s* )(1.00 s)’ =14.5m.

98. Picture the Problem: Agolf ball rolls in a straight line, decreasing its speed at a constant rate until it comes to rest.

Strategy: You could find the (negative) acceleration by using Equation 2-12 and the known initial and final velocities
and the distance traveled. Then employ Equation 2-12 again using the same acceleration, but solving for the v, required
to go the longer distance. Instead, we’ll present a way to calculate the same answer using a ratio, which will also be
useful to calculate the initial speed needed to make the putt over the new 6.00-ft distance.

Solution: 1. (a) Calculate the ratio of initial Vmake,o _ \/VZ - ZaAXmake — \/02 - 2aAXmake — AAXmake
velocities based upon Equation 2-12: Vinisso x/VZ “2aAx. \/02 “2aAx. \I AX, .
2.Now solve for v_,_ ., the initial speed AX e 2351t

ke Voo = Voo o™k — (154 ms), [—22 " —[1.77 mis
needed to make the 23.5-ft putt: O A ( ) 23.5-6.00 ft
3.(b) Employ the same ratio to find the _ AXoew _ (154 mfs 600t 15502 ms
initial speed for the new 6.00-ft putt: Vrawo = Viso AX e t ) 23.5-6.00 ft

Insight:Calculating ratios can often be a convenient and simple way to solve a problem. In this case a three-step
solution became two steps when we calculated the ratio, and furthermore we never needed to convert feet to meters
because the units cancel out in the ratio. Learning to calculate ratios in this manner is a valuable skill in physics.
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99.

100.

Picture the Problem: After its release by a glaucous-winged gull,a shell rises straight upward, slows down, and
momentarily comes to rest before falling straight downward again.

Strategy:Find the extra altitude attained by the shell due to its upward initial velocity upon release, and add that value
to 12.5 m to find the maximum height it reaches above ground. The time-free equation for velocity in terms of
displacement (Equation 2-12) can be employed for this purpose. The time the shell spends going up and the time it
spends going down can each be found from the known heights and speeds (Equations 2-7 and 2-11). Then the speed
upon landing can be determined from the known time it spends falling (Equation 2-7). Let upward be the positive
direction throughout the solution to this problem.

Solution: 1. (a) The motion of the shell is influenced only by gravity once it has been released by the gull. Therefore its
acceleration will be [9.81 m/s” downward| from the moment it is released, even though it is moving upward at the
release.

. - 2 2 2 _ 2
2. (b) Use Eantlon 2-12, setting the X —125m + V'oVs _oem s 02 —(5.20 m/s)
final speed v = 0, to find the extra altitude —29 —2(9.81 m/Sz)
gained by the shell due to its initial upward
speed, and add it to the 12.5 m: Xnax =12.5m +1.38 m =
3.(c) The time the shell travels upward is the time it (_VV _0-52ms o
takes gravity to bring the speed to zero (Equation 2-7): -g  -9.81m/s’
4. The time the shell travels down is governed by X=X +Vt—3gt° = 0=x,+0-3gt’
the distance and the acceleration (Equation 2-11): \/W

9.81 m/s’

5. The total time of flight is the sum: t = b +lgoun =0.53+1.68's =[2.21 5]
6. (d) The speed of the shell upon impact V=V,—gt=0-(9.81m/s*)(168 s)=-16.5m/s
is given by the acceleration of gravity and
the fall time (Equation 2-7): V| =[16.5 m/s

Insight: There are a variety of other ways to solve this problem. For instance, it is possible to find the final velocity of
16.5 m/s in part (d) by using Equation 2-12 with v, =5.2 m/s and Ax =-12.5 m without using any time information.

Try it for yourself!

Picture the Problem: Liquid from a syringe squirts straight upward, slows down, and momentarily comes to rest before
falling straight downward again.

Strategy: Find the time of flight by exploiting the symmetry of the situation. If it takes time t for gravity to slow the
liquid drops down from their initial speed vq to zero, it will take the same amount of time to accelerate them back to the
same speed. They therefore return to the needle tip at the same speed vy with which they were squirted. Use this fact
together with Equation 2-7 to find the time of flight. The maximum height the drops achieve is related to the square of
Vp, as indicated by Equation 2-12.

Solution: 1. (a) Calculate he time of flight t=V=Vo _ (—Yo) Vo _2 2(1.5mis) _[0.313]
for v, =1.5 m/s, using Equation 2-7: —-g —-g g 9.8lmis®

2. (b) Calculate the maximum height for Ax— vVi-vi 07-vi v (L5 mis)’ 3
v, =1.5 m/s, using Equation 2-12: T 29 29 29 2(9.81 mis?) =

Insight: The symmetry of the motion of a freely falling object can often be a useful tool for solving problems quickly.
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101.

102.

Picture the Problem: The trajectories of a hot-air balloon and a 5.0

camera are shown at right. The balloon rises at a steady rate
while the camera’s speed is continually slowing down under the 40
influence of gravity. The camera is caught when the two E Balloon : -
trajectories meet. = 30
= |
Strategy: The equation of motion for position as a function of % 2.0 'Eamera
time (Equation 2-10) can be used to describe the balloon, while T 10 < ,
the equation for position as a function of time and acceleration ' ~
(Equation 2-11) can be used to describe the camera’s motion. 00
Set these two equations equal to each other to find the time at 0.00 0.10 0.20 0.30
which the camera is caught. Then find the height of the balloon Time (s)
at the instant the camera is caught.
Solution: 1. WriteEquation 2-10 for the balloon: Xp = Xpo +Vpt
2.Write Equation 2-11 for the camera: X, =0+V,t—3gt?
3. Set x, =x, and solve for t: Xpo+Vpt=V,  t—1 gt?

0=—Xyo+(Veo —Vp )t -2 0t

4. Multiply by —1 and substitute the numerical values: 0=25m —(13-2.0 m/s)t +§(9.81 m/sz)t2
0=25-11t+4.9t

5. Apply the quadratic formula and solve for t. The b+b?—d4ac +11% «fllz -4(4.9)(2.5)
t: — =

larger root corresponds to the time when the camera

would pass the balloon a second time, on its way - 2a 9.8
down back to the ground. t=0.260r20s
6. Find the height of the balloon at that time: X, =Xy +V, t=25m+(2.0 m/s)(0.26 s) =

Insight:If the passenger misses the camera the first time, she has another shot at it after 2.0 s (from the time it is
thrown) when the camera is on its way back toward the ground. That is the meaning of the second solution for t.

Picture the Problem: The height-versus-time plot of a rock on a vim)
distant planet is shown at right. The rock starts with a high 0
velocity upward, slows down and momentarily comes to rest 25
after about 4.0 seconds of flight, and then falls straight down -
and lands at about 8.0 seconds. i
15
Strategy: The equation of motion for position as a function of .
time and acceleration (Equation 2-11) can be used to find the :
acceleration from the second half of the trajectory, where the 5
rock falls 30 m from rest and lands 4.0 seconds later. Once t(s)
acceleration is known, the initial velocity can be determined 1 2 3 4 5 6 7 &
from Equation 2-7. Let upward be the positive direction.
Solution: 1. (a) Solve Equation 2-11 for accel- B
eration, assuming v, = Oat the peak of its flight a= ZAZX = 2(3—0T) =-38mis* =la|=
and the rock falls 30 m in 4.0 s: t (40s)
2.(b) Find the initial velocity using Eq. 2-7, v=y, +at
concentrating on the first half of the flight that )
ends with v = 0 at the peak: Y, =v-at=0-(-38mis*)(4.05)=

Insight: There are several other ways of finding the answers, including graphical analysis. Try measuring the slope of
the graph at the launch point and the point at which the rock lands to find the initial and final velocities. Those values
(about £15 m/s) can then be used to find the acceleration.
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103. Picture the Problem: A squid emits a jet of water, propelling itself forward with constant acceleration, then coasts to
rest with constant (negative) acceleration.

Strategy: The magnitude of the acceleration can be determined from the position as a function of time equation
(Equation 2-11) and the given information. During the first part of the squid’s motion the initial velocity is zero, and
during the second part the final velocity is zero.

Solution: 1. (a)Find the acceleration during the X =0+0+3a,t’
first part of the squid’s motion, noting that 2 2(0.179 m
X, =V, =0 s ( )=12.4m/52

t  (0.170s)’

2.. (b)Find tl.le squi('i’s .Velocity at the end of the V=, +at = 0+(12_4 m/s? )(0_170 s)=2.11m/s
first part of its motion:

3.The time e;lapged during the secoqd part of the t, =t , —t =0.400-0.170 s =0.230 s
squid’s motion is found by subtraction:
4T lcs st gt oond o a5 ~0421-01T9 =026z
5. Calculate the squid’s acceleration during the X, =0+vt, +1a, t22
secondpart of its motion: 2(x2 —vtz)
2 = tzz
2[(0.242 m)—(2.11m/s)(0.230 ) |
B (0.230'5)°

a, =[-9.20 mis’]

Insight:Notice that the answer to part (b) can also be determined without finding the squid’s velocity. Instead, work
backward and pretend the squid starts from rest and covers 0.242 m in 0.230 s. Then

a, =2x,/t; =2(0.242 m)/(0.230 s)° =9.15 m/s?, which is the same result to within rounding error, although you
must recognize that the acceleration is negative, not positive.
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104. Picture the Problem: A ball falls straight downward from rest at an initial height h.

105.

Strategy: The problem requires that the time to fall the final 3/4 h from rest is 1.00 s. Find the
velocity v, at % h above the ground using Equation 2-12. Use Equation 2-11 along with that initial
velocity and the time elapsed to determine h. Then the total time of fall can be found using
Equation 2-11 again, this time with an initial velocity of zero.

s
-0

X
=3

Solution: 1. (a) Find the velocity v; of the v =0° +2gAx =2g (%h) = v, =,/igh
ball after falling a distance % h:

%

2. Now insert that velocity as the initial Ax=vt+igt?

velocity for the remaining portion of the )
fall into Equation 2-11: ih= («ﬁ gh)t +30t

3.The time t is 1.00 s as given in the problem 3h- %g :( 1 h)t

statement. Rearrange the above equation and

square both sides to get a quadratic equation: h?-2(gt’)(2h)+1 %9 ht®
h’ (3¢ 2)h+zg tt =

h —(2gt’)h+4g’t* =0
h? —2(9.81 m/s?)(L.00s)" h+4(9.8L m/s? )" (L.00's)* =0
h?-21.8h+42.8=0

2
4. Now apply the quadratic formula for h: _b+ "b —4ac _ 21 8+‘/ 2L8)" ~4(1)(428)

2(1)
5. (b) Use Equation 2-11 again to find 19 6 m
the total time of fall: 981 mis? = m

Insight: The first root in step 4 (2.18 m) is thrown out because the total fall time from that height would be less than
1.00 s, but the ball is supposed to be in the air for longer than 1.00 s. Notice it takes half the total flight time to fall the
first quarter of the fall distance, and half to fall the final three quarters.

=218, [19.6 m

Picture the Problem: A ski glove falls straight downward from rest, accelerates to a maximum speed under the
influence of gravity, then decelerates due to its interaction with the snow before coming to rest at a depth d below the
surface of the snow.

Strategy: We can find the maximum speed of the glove from its initial height and the acceleration of gravity by using
Equation 2-12. The same equation can be applied again, this time with a zero final speed instead of zero initial speed, to
find the acceleration caused by the snow. Let downward be the positive direction.

Solution: 1. (a) Solve Equation 2-12 :
i = 2gh =|4/2gh
for v, assuming v, =0: v «/0 +29g / g

2. (b) Use Equation 2-12 to find
the acceleration caused by the snow:

0°=v}+2ad = —Zald:(aﬁgh)2 = az—gg

3. The negative sign on the acceleration means the glove is accelerated during its interaction with the snow.

Insight:In Chapter 5 we will analyze the motion of objects like this glove in terms of force vectors. This motion can
also be explained in terms of energy using the tools introduced in Chapters 7 and 8.
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106. Picture the Problem: A ball rises straight upward, passes a power line, momentarily comes to rest, and falls back to
Earth again, passing the power line a second time on its way down.

Strategy:The ball will reach the peak of its flight at a time directly between the times it passes the power line. The time
to reach the peak of flight can be used to find the initial velocity using Equation 2-7, and the initial velocity can then be
used to find the height of the power lines using Equation 2-11.

Solution: 1. Find the time at which tpeak = tIine up +%(tlinedown _tline up ) =0.75 S+%(15_075 S)
the ball reaches its maximum altitude: t  —11s
peak -
2. Find the initial velocity using Equation 2-7: 0=Vo =Gy, = V,=(9.81m/is’)(L1s)=
3. Find the height of the power X =04V tine up —%gtﬁneup
line using Equation 2-11: x = (11 m/s)(0.75 s)—§(9.81 m/sz)(0.75 s)’ =

Insight: As is often the case, there are several other ways to solve this problem. Try setting the heights at 0.75 s and
1.5 s equal to each other and solving for vo. Can you think of yet another way?

107. Picture the Problem: A ball appears at the bottom edge of the window, rising straight
upward with initial speed v,. It travels upward, disappearing beyond the top edge of the
window, comes to rest momentarily, and then falls straight downward, reappearing some
time later at the top edge of the window. In the drawing at right the motion of the ball is
offset horizontally for clarity.

Strategy: Let t = 0 correspond to the instant the ball first appears at the bottom edge of the
window with speed v,. Write the equation of position as a function of time and accelera-
tion (Equation 2-11) for when the ball is at the top edge (position 2) in order to find v,.
Use vj to find the time to go from position 1 to the peak of the flight (Equation 2-7).
Subtract 0.25 s from that time to find the time to go from position 2 to the peak of the
flight. The time elapsed between positions 2 and 3 is twice the time to go from position 2
to the peak of the flight. The time from position 2 to the peak can be used to find h from
Equation 2-11.

Solution: 1. (a) Write Equation 2-11 d=v,t,-1gt?
for positions 1 and 2, and solve for vj: d+igt? 105 m +%(9.81 m/s2)(0.25 s)z
V, = =

A =54 m/s
t, 0.25s
2.Find the time to go from position 1 to At = 0-V, _ 54ms o
the peak of the flight using Equation 2-7: P -g 9.81 m/s?
3.Subtract 0.25 s to find the time to go _ _ _
from position2 to the peak of the flight: Al =Al, —AL; =0.55-0255=030s
4. The time to reappear is twice this time: At,, =2At,, =2(0.305) =
5. (b) The height h can be found from At, | 0=h+0-1gAt} 5
and Equation 2-11, by considering the ball h— %(9.81 m/sz)(O.SO 5)2 _

dropping from rest at the peak to position 3:

Insight: As usual there are other ways to solve this problem. Try finding the velocity at position 2 and use it together
with the acceleration of gravity and the average velocity from position 2 to the peak to find At,, and h.
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108.

1009.

110.

111.

Picture the Problem: The lunar lander falls straight downward, accelerating over a distance of 4.30ft before impacting
the lunar surface.

Strategy: Use the given acceleration and distance and the time-free equation of motion (Equation 2-12) to find the
velocity of the lander just before impact. Use the known initial and final velocities, together with the distance of the
fall, to find the time elapsed using Equation 2-10.

Solution: 1. Find the velocity just Vigg = a/vg +2aAX
before impact using Equation 2-12:
= /(0500 ftls)" +2(1.62 mis* x3.28 m) (4.30 ft) = 6.78 fts

. Axgy 430 ft
2. Solve Equation 2-10 for tu i = _ _[L18s
olve Equation 2-2B Tor e Ty v, ) (05004 6.78 fUs)

Insight: An alternative strategy would be to solve Equation 2-11 as a quadratic equation in t. Assuming the lander feet
had little in the way of shock absorbers, the lander came to rest in a distance given by the amount the lunar dust
compacted underneath the feet. Supposing it was about 2 cm, the astronauts experienced a brief deceleration of

106 m/s* = 11g! Bam!

Picture the Problem: The lunar lander falls straight downward, accelerating over a distance of 4.30 ft before impacting
the lunar surface.

Strategy: Use the given acceleration and distance and the time-free equation of motion (Equation 2-12) to find the
velocity of the lander just before impact.

Solution: Find the velocity just Vit = ng +2aAx
before impact using Equation 2-12:
= \j(o.soo ft/s)’ +2(1.62 m/s® x3.28 ft/m)(4.30 ft) =[6.78 ft/s

Insight: The initial speed made little difference; if you set v, =0 you’ll note that v, , =6.76 ft/s.

Picture the Problem: The lunar lander falls straight downward, accelerating over a distance of 4.30ft before impacting
the lunar surface.

Strategy:The lander has an initial downward velocity and accelerates downward at a constant rate. Use the knowledge
that the velocity-versus-time graph is a straight line for constant acceleration to determine which graph is the
appropriate one.

Solution: |Graph B]is the only one that depicts the speed increasing linearly with time.

Insight:Graph D would be an appropriate depiction of the altitude versus time graph.

Picture the Problem: We imagine that the astronauts increase the upward thrust, giving the lunar lander a small upward
acceleration.

Strategy:The lander has an initial downward velocity and accelerates upward at a constant rate. This means the
lander’s speed would decrease at a constant rate. Use the knowledge that the velocity-versus-time graph is a straight line
for constant acceleration to determine which graph is the appropriate one.

Solution: Plot Cjis the only one that depicts the speed decreasing linearly with time.

Insight: The altitude-versus-time graph in this case would curve upward much like plot A but would have an initially
negative slope like plot D.
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112.

113.

Picture the Problem: The trajectories of the speeder and police v
car are shown at right. The speeder moves at a constant velocity 400 -
while the police car has a constant acceleration, except the police //?
car is delayed in time from when the speeder passes it at x = 0. 300 1

200

[ay]
i
D
D
(=R
]
@
“y

Strategy: The equation of motion for position as a function of time
and velocity (Equation 2-10) can be used to describe the speeder,
while the equation for position as a function of time and
acceleration (Equation 2-11) can be used to describe the police
car’s motion. Set these two equations equal to each other and
solve the resulting equation to find the speeder’s head-start x, .

h

o police

Position, x {m)

100 e o

-3 0 3 G 9 12 15
Time, t (s)

Solution: 1. Write Equation 2-10 for
the speeder, with t = 0 corresponding
to the instant it passes the police car:

Xs :Xshs+vst

2. Write Equation 2-11 for the police car: X, =0+0+3%a,t?

3. Set x, =x, and solve for x,: %aptz =X, +V, t

Xge =+a,t —V, t=1(3.8m/s)(15's)° —(25 m/s)(15 )

Xy =(53 M|

Insight: This head start corresponds to about 2.10 seconds (verify for yourself, and/or examine the plot) so the police
officer has to be ready to start the chase very soon after the speeder passes by!

Picture the Problem: The trajectories of the speeder and police 200
car are shown at right. The speeder moves at a constant velocity 2
while the police car has a constant acceleration. £ 150 -
by v
Strategy: The equation of motion for position as a function of g 100 ﬁ'/
time and velocity (Equation 2-10) can be used to describe the ‘§ speeder A
speeder, while the equation for position as a function of time and & 50 /"'_ .
acceleration (Equation 2-11) can be used to describe the police - 7 police
car’s motion. Set these two equations equal to each other and a _— |
solve the resulting equation for the acceleration of the police car. 0 2 4 6 8
Time, ¢ (s)
Solution: 1. Write Equation 2-10 for
the speeder, with t = 0 corresponding X =0+v,t
to the instant it passes the police car:
2. Write Equation 2-11 for the police car: X, = O+O+§apt2
3. Set x, = x, and solve for a : lat? =yt
o <2025 i

Insight: A faster acceleration of the police car would allow it to catch the speeder in less than 7.0 s.
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114.

115.

Picture the Problem: The trajectory of abag of sand is shown at right.
After release from the balloon it rises straight up and comes

momentarily to rest before accelerating straight downward and
impacting the ground. (I
Strategy:Because the initial velocity, acceleration, and altitude are o \
known, we need only use Equation 2-12 to find the final velocity. | » W
Sy TS
Solution: 1. (a) Because the upward speed of the sandbag is the same, it ﬂ
will gain the same additional 2 m in altitude as it did in the original e
Example 2-12. Therefore the maximum height will be jequal to 32 m|. 301.0m :
(¢ t
t=0

2.(b) ApplyEquation 2-12to find the final velocity: V2 =V +2aAx
v=J(65 mis)’ +2(-9.81 mis*)(~30.0 m) =

Insight: Another way to find the final velocity just before impact is to allow the sandbag to fall from rest a distance of
32m. Tryit!

Picture the Problem: Abag of sand has an initial downward velocity when it breaks free from the balloon, and is
accelerated by gravity until it hits the ground.

Strategy:Because the initial velocity, acceleration, and altitude are known, we need only use Equation 2-12 to find the
final velocity. The time can then be found from the average velocity and the distance.

Solution: 1.(a) Apply Equation 2-12 to find the final v: VZ =V +2aAx
v=J(42 mis)’ +2(-9.81 mis*)(~35.0 m) = 265 mis

. . L - 0-35m
2. Use Equation 2-10 to find the time: t= X=X _ = -2,3 S
L(vo+v) 1(-45-26.5mls)

3. (b) Apply Equation 2-12 again to find v at x = 15 m: V2 =V +2aAx
v=J(42 mis)’ +2(-9.81 mis*) (15-35 m) =

Insight: Another way to find the descent time of the bag of sand is to solve Equation 2-11 using the quadratic formula.
Try it!
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