Solutions Manual

to accompany
Principles of Highway Engineering and Traffic Analysis, 4e
By
Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski

Chapter 3 Geometric Design of Highways

U.S. Customary Units

Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Preface

The solutions to the fourth edition of Principles of Highway Engineering and Traffic Analysis were prepared with the Mathcad ${ }^{1}$ software program. You will notice several notation conventions that you may not be familiar with if you are not a Mathcad user. Most of these notation conventions are self-explanatory or easily understood. The most common Mathcad specific notations in these solutions relate to the equals sign. You will notice the equals sign being used in three different contexts, and Mathcad uses three different notations to distinguish between each of these contexts. The differences between these equals sign notations are explained as follows.

- The ' $:=$ ' (colon-equals) is an assignment operator, that is, the value of the variable or expression on the left side of ' $:=$ 'is set equal to the value of the expression on the right side. For example, in the statement, $L:=1234$, the variable ' L ' is assigned (i.e., set equal to) the value of 1234. Another example is $x:=y+z$. In this case, x is assigned the value of $y+z$.
- The ' $=$ ' (bold equals) is used when the Mathcad function solver was used to find the value of a variable in the equation. For example, in the equation
$5.2 \cdot t-0.005 \cdot t^{2}=18.568+10 \cdot(t-12.792)$, the $=$ is used to tell Mathcad that the value of the expression on the left side needs to equal the value of the expression on the right side. Thus, the Mathcad solver can be employed to find a value for the variable ' t ' that satisfies this relationship. This particular example is from a problem where the function for arrivals at some time ' t ' is set equal to the function for departures at some time ' t ' to find the time to queue clearance.
- The ' $=$ ' (standard equals) is used for a simple numeric evaluation. For example, referring to the $\mathrm{x}:=\mathrm{y}+\mathrm{z}$ assignment used previously, if the value of y was 10 [either by assignment (with :=), or the result of an equation solution (through the use of $=$) and the value of z was 15 , then the expression ' $\mathrm{x}=$ ' would yield 25 . Another example would be as follows: $\mathrm{s}:=$ $1800 / 3600$, with $s=0.5$. That is, ' s ' was assigned the value of 1800 divided by 3600 (using :=), which equals 0.5 (as given by using =).

Another symbol you will see frequently is ' \rightarrow '. In these solutions, it is used to perform an evaluation of an assignment expression in a single statement. For example, in the following statement, $\mathrm{Q}(\mathrm{t}):=\mathrm{Arrivals}(\mathrm{t})-$ Departures $(\mathrm{t}) \rightarrow 2.200 \cdot \mathrm{t}-.1000 \cdot \mathrm{t}^{2}, \mathrm{Q}(\mathrm{t})$ is assigned the value of Arrivals(t$)$ - Departures(t$)$, and this evaluates to $2.2 \mathrm{t}-0.10 \mathrm{t}^{2}$.

Finally, to assist in quickly identifying the final answer, or answers, for what is being asked in the problem statement, yellow highlighting has been used (which will print as light gray).
${ }^{1}$ www.mathcad.com

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the elevation and stationing of the low point, PVI and PVT.

Problem 3.1

$\mathrm{L}:=1600 \mathrm{ft}$
PVC is at $120+00 \quad$ stapVC $:=12000 \quad$ elevPVC $:=1500 \quad$ (given)
$\mathrm{G}_{1}:=-3.5 \% \quad \mathrm{G}_{2}:=6.5 \%$
$A:=|-3.5-6.5| \quad A=10$
$\operatorname{sta}_{\mathrm{PVI}}:=12000+\frac{1600}{2} \quad$ sta $_{\mathrm{PVI}}=12800 \quad$ sta $_{\mathrm{PVI}}=128+00$
elev $_{\mathrm{PVI}}:=\operatorname{elev}_{\mathrm{PVC}}+\left[\mathrm{G}_{1} \cdot\left(\frac{\mathrm{~L}}{2}\right)\right] \quad \operatorname{elev}_{\mathrm{PVI}}=1472 \mathrm{ft}$
stapVT $:=12000+1600 \quad$ stapVT $=13600 \quad$ sta $_{\mathrm{PVT}}=136+00$
$Y_{f}:=\frac{A \cdot L}{200} \quad Y_{f}=80$
elev $_{\text {PVT }}:=1500+\left(G_{1} \cdot L\right)+Y_{f} \quad$ elev $_{\text {PVT }}=1524 \quad f t$
low point when $\mathrm{dy} / \mathrm{dx}=2 \mathrm{ax}+\mathrm{b}=0$

$$
\begin{align*}
& a:=\frac{G_{2}-G_{1}}{2 \cdot L} \quad a=0.000031 \tag{Eq.3.6}\\
& b:=G_{1} \quad b=-0.035 \tag{Eq.3.3}\\
& \text { dist }_{\text {low }}:=\frac{-b}{2 \cdot a} \quad \text { dist }_{\text {low }}=560 \mathrm{ft} \\
& \text { sta }_{\text {low }}:=12000+560 \quad \text { sta }_{\text {low }}=125+60
\end{align*}
$$

offset to low point

$$
\begin{align*}
& Y_{\text {low }}:=\frac{\mathrm{A}}{200 \cdot \mathrm{~L}} \cdot \operatorname{dist}_{\text {low }}{ }^{2} \quad \mathrm{Y}_{\text {low }}=9.8 \mathrm{ft} \tag{Eq.3.7}\\
& \text { elev }_{\text {low }}:=1500+\left(G_{1} \cdot \text { dist }_{\text {low }}\right)+Y_{\text {low }} \quad \text { elev }_{\text {low }}=1490.2 \mathrm{ft}
\end{align*}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.2

Determine the elevation and stationing of the high point, PVC and PVT.
$\mathrm{L}:=500$
PVI is at $340+00 \quad$ sta $_{\mathrm{PVI}}:=34000$
elev $_{\mathrm{PVI}}:=1322$ (given)
$\mathrm{G}_{1}:=4.0 \% \quad \mathrm{G}_{2}:=-2.5 \%$
$A:=|4.0+2.5| \quad A=6.5$
stapVC $:=\operatorname{sta}_{\mathrm{PVI}}-\frac{500}{2} \quad$ sta $_{\mathrm{PVC}}=33750 \quad$ sta $_{\mathrm{PVC}}=337+50$
$\operatorname{elev}_{P V C}:=\operatorname{elev}_{P V I}-\left(G_{1} \cdot \frac{L}{2}\right) \quad$ elevPVC $=1312 \mathrm{ft}$
high point when $2 a x+b=0$

$$
\begin{align*}
& \mathrm{a}:=\frac{\mathrm{G}_{2}-\mathrm{G}_{1}}{2 \cdot \mathrm{~L}} \quad \mathrm{a}=-0.000065 \tag{Eq.3.6}\\
& \mathrm{~b}:=\mathrm{G}_{1} \quad \mathrm{~b}=0.04 \tag{Eq.3.3}\\
& \text { dist }_{\text {high }}:=\frac{-\mathrm{b}}{2 \cdot \mathrm{a}} \quad \text { dist }_{\text {high }}=307.692 \\
& \text { sta }_{\text {high }}:=\text { sta }_{\text {PVC }}+\text { dist }_{\text {high }} \quad \text { sta }_{\text {high }}=34057.69 \quad \text { sta }_{\text {high }}=340+58
\end{align*}
$$

$$
\begin{equation*}
Y_{\text {high }}:=\frac{\mathrm{A}}{200 \cdot \mathrm{~L}} \cdot \text { dist }_{\text {high }}{ }^{2} \tag{Eq.3.7}
\end{equation*}
$$

$$
\text { elev }_{\text {high }}:=\text { elev }_{P V C}+\left(G_{1} \cdot \text { dist }_{\text {high }}\right)-Y_{\text {high }} \quad \text { elev }_{\text {high }}=1318.15 \mathrm{ft}
$$

$$
\operatorname{sta}_{\mathrm{PVT}}:=\text { sta }_{\mathrm{PVI}}+\frac{\mathrm{L}}{2} \quad \text { sta }_{\mathrm{PVT}}=34250 \quad \text { sta }_{\mathrm{PVT}}=342+50
$$

$$
\begin{equation*}
Y_{\text {final }}:=\frac{A \cdot L}{200} \tag{Eq.3.9}
\end{equation*}
$$

$$
\text { elev }_{\text {PVT }}:=\text { elev }_{\mathrm{PVC}}+\left(\mathrm{G}_{1} \cdot \mathrm{~L}\right)-Y_{\text {final }} \quad \text { elev }_{\mathrm{PVT}}=1315.75 \mathrm{ft}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{align*}
& \text { sta }_{\mathrm{PVI}}:=11000 \quad \text { elev }_{\mathrm{PVI}}:=1098.4 \\
& \mathrm{~L}:=600 \text { sta }_{\text {pipe }}:=11085 \text { elev }_{\text {pipe }}:=1091.6 \tag{given}
\end{align*}
$$

(elevation is to center of pipe, 4 ft diameter)

$$
\mathrm{G}_{1}:=1.2 \% \quad \mathrm{G}_{2}:=-1.08 \%
$$

$$
\text { sta } \mathrm{PVC}:=11000-\frac{\mathrm{L}}{2} \quad \text { sta }_{\mathrm{PVC}}=10700
$$

$$
\operatorname{elev}_{P V C}:=\operatorname{elev}_{P V I}-\left(G_{1} \cdot \frac{L}{2}\right) \text { elevPVC }^{2}=1094.8
$$

using the parabolic equation, $y=a x^{2}+b x+c$

$$
\begin{array}{ll}
\mathrm{a}:=\frac{\mathrm{G}_{2}-\mathrm{G}_{1}}{2 \cdot L} & \mathrm{a}=-1.9 \times 10^{-5} \\
\mathrm{~b}:=\mathrm{G}_{1} & \mathrm{~b}=0.01 \tag{Eq.3.3}\\
\mathrm{c}:=\text { elev}_{\text {PVC }} & \mathrm{c}=1094.8
\end{array}
$$

elevation of surface over pipe is $y(11085-10700), y(385)$
$y:=a \cdot\left(385^{2}\right)+b \cdot 385+c \quad y=1096.6$
remember pipe elevation is to center, 4 foot diameter
depth $:=1096.6-(1091.6+2) \quad$ depth $=3 \mathrm{ft}$
location of high point is when $d y / d x=0 \quad d y / d x=2 a x+b$
$\mathrm{x}:=\frac{-\mathrm{b}}{2 \cdot \mathrm{a}} \quad \mathrm{x}=315.79$
station of high point $=110+15.8$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.4

Determine if the curve provides sufficient stopping sight distance.

$\mathrm{H}_{1}:=3.5 \quad \mathrm{H}_{2}:=2.0 \quad$ (assumed)
$A:=|1.20+1.08| \quad A=2.28$
$\mathrm{S}=\mathrm{SSD}(60 \mathrm{mi} / \mathrm{h}) \quad \mathrm{S}:=570$
calculate required curve length for design speed, compare to actual length
Assume $\mathrm{S}>\mathrm{L}$
$\mathrm{L}:=2 . \mathrm{S}-\frac{200\left(\sqrt{\mathrm{H}_{1}}+\sqrt{\mathrm{H}_{2}}\right)^{2}}{\mathrm{~A}} \quad \mathrm{~L}=193.377 \mathrm{ft}$
Actual L is greater than calculated minimum L , curve is adequately designed problem can be done using K -values:

SSD := 570
$A:=|1.20+1.08| \quad A=2.28$
$\mathrm{L}:=600$
solve for K of actual curve, compare to design K for $60 \mathrm{mi} / \mathrm{h}$
$\mathrm{K}:=\frac{\mathrm{L}}{\mathrm{A}} \quad \mathrm{K}=263.158 \mathrm{ft}$
(Eq. 3.17)
from table 3.2, K-value based on SSD for $60 \mathrm{mi} / \mathrm{h}$ is 151 ft
since $263 \mathrm{ft}>151 \mathrm{ft}$, curve is adequately designed

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.5

sta $_{\mathrm{PVI}}:=11077 \quad \operatorname{elev}_{\mathrm{PVI}}:=947.34 \quad$ sta $_{\mathrm{PVC}}:=10900 \quad$ elev $_{\mathrm{PVC}}:=950 \quad$ (given)
sta $_{\text {lowpt }}:=11050$
solve for initial grade

$$
\mathrm{G}_{1}:=\frac{\left(\operatorname{elev}_{\mathrm{PVI}}-\operatorname{elev}_{\mathrm{PVC}}\right)}{\left(\text { sta }_{\mathrm{PVI}}-\text { stapVC }\right)} \quad \mathrm{G}_{1}=-0.015 \quad \mathrm{G}_{1}=-1.5 \%
$$

solve for location of low point

$$
\begin{align*}
& x_{L}:=\text { sta }_{\text {lowpt }}-\text { stapVC } \\
& K:=\frac{x_{L}=150}{1.5} \quad x_{L}=\left|G_{1}\right|^{*} K \tag{Eq.3.11}\\
& K=100
\end{align*}
$$

Checking table 3.2, $K=96$ is nearest value without going over $K=100$; thus, design speed is $50 \mathrm{mi} / \mathrm{h}$.

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.6

Compute the difference in design curve lengths for 2005 and 2025 designs.

Gi:=1
$G_{2}:=-2$
$A:=\left|G_{2}-G_{1}\right|$
$A=3$
(given)
find required L for $70 \mathrm{mi} / \mathrm{h}$ design speed

K
$\mathrm{L}_{2005}:=\mathrm{K} \cdot \mathrm{A} \quad \mathrm{L}_{2005}=741$
$\mathrm{SSD}_{2005}:=730$
(Table 3.1)
$V_{M}:=70 \cdot \frac{5280}{3600} \quad V=102.667$
$H_{1}:=3 \quad H_{2}:=1 \quad$ GN: $=32.2 \quad G:=0$
(given)

For 2025 values, a increases by 25\% and t_{r} increases by 20\%
$a_{2025}:=11.2 \cdot 1.25 \quad a_{2025}=14 \quad t_{r 2025}:=2.5 \cdot 1.2 \quad t_{r 2025}=3$

Calculate required stopping sight distance in 2025
$S_{2025}:=\frac{v^{2}}{2 \cdot g \cdot\left[\left(\frac{a_{2025}}{g}\right)-G\right]}+V \cdot t_{r 2025} \quad S_{2025}=684.444$
(Eq. 3.12)

Using this distance, calculate required minimum curve length in 2025
$L_{2025}:=\frac{A \cdot S_{2025}{ }^{2}}{200 \cdot\left(\sqrt{\mathrm{H}_{1}}+\sqrt{\mathrm{H}_{2}}\right)^{2}}$
$\mathrm{L}_{2025}=941.435 \quad$ Diff $:=\mathrm{L}_{2025}-\mathrm{L}_{2005} \quad$ Diff $=200.43 \quad \mathrm{ft}$

Alternative Solution

$$
\begin{array}{ll}
\mathrm{L}_{2002}:=\frac{\mathrm{A} \cdot \mathrm{SSD}_{2005}{ }^{2}}{2158} & \mathrm{~L}_{2005}=741 \\
\mathrm{~L}_{2025}-\mathrm{L}_{2005}=200.435 &
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.7

Determine the height of the driver's eye.
$\mathrm{L}:=1200 \quad \mathrm{H}_{2}:=2 \quad$ (given)
$\mathrm{K}:=84$
(Table 3.2)
calculate A of curve
$A:=\frac{L}{K} \quad A=14.286$
solve for H_{1}, using design SSD for $60 \mathrm{mi} / \mathrm{h}$
$S:=570$
$\mathrm{S}<\mathrm{L}$
$L=\frac{A \cdot S^{2}}{200\left(\sqrt{\mathrm{H}_{1}}+\sqrt{\mathrm{H}_{2}}\right)^{2}}$
$\mathrm{H}_{1}=8.9 \quad \mathrm{t}$

Problem 3.8

Assess the adequacy of this existing curve.

$\mathrm{x}:=352 \quad \mathrm{Y}_{\mathrm{x}}:=3 \quad \mathrm{~L}:=800 \quad$ (given)
solve for A using known offset
$Y_{x}=\frac{A}{200 \cdot L} \cdot x^{2}$
$A:=\frac{200 Y_{x} \cdot L^{\prime \prime}}{x^{2}}$
$A=3.874$
Solve for K of existing curve

$$
\begin{equation*}
K:=\frac{L}{A} \quad K=206.507 \tag{Eq.3.10}
\end{equation*}
$$

From Table 3.2, K for 60 is 151 . Since $207>151$, curve is adequate for $60 \mathrm{mi} / \mathrm{h}$.
problem can also be done using Equation 3.15 for SSD
solve for A using known offset
$Y_{x}=\frac{A}{200 \cdot L} \cdot x^{2}$
$A=3.874$

SSD := 570
Solve for required minimum L , assuming $\mathrm{SSD}<\mathrm{L}$
$L_{m}:=\frac{A \cdot S S D^{2}}{2158} \quad L_{m}=583.25 \quad \mathrm{ft}$
Since $800 \mathrm{ft}>583 \mathrm{ft}$, curve is adequate for $60 \mathrm{mi} / \mathrm{h}$

Determine the stationing and elevation of the PVCs and PVTs.

$60 \mathrm{mi} / \mathrm{h}$ design speed
(given)

$$
\begin{align*}
& \text { sta }_{\mathrm{PVCC}}=0+00 \quad \text { elevPVCc }:=100 \quad \mathrm{ft} \\
& \mathrm{~K}_{\mathrm{C}}:=151 \tag{Table3.2}\\
& \mathrm{~K}_{\mathrm{S}}:=136
\end{align*}
$$

$$
A:=|0-2| \quad A=2
$$

calculate lengths of crest and sag curves

$$
\begin{array}{ll}
L_{C}:=K_{C} \cdot A & L_{C}=302 \tag{Eq.3.10}\\
L_{s}:=K_{S} \cdot A & L_{s}=272
\end{array}
$$

Calculate station and elevation of PVT for crest curve,

$$
\mathrm{sta}_{\mathrm{PVIc}}=1+51
$$

$$
\text { elev }_{P V} T_{c}:=e^{20} \mathrm{PVCc}-\frac{\mathrm{A} \mathrm{~L}_{\mathrm{c}}}{200}
$$

$$
\text { elev }_{\mathrm{PV}}^{\mathrm{c}} \mathrm{c}=96.98 \mathrm{ft}
$$

$$
P V T_{c}:=0+302
$$

$$
P V T_{\mathrm{c}}=302
$$

$$
\operatorname{sta}_{\mathrm{PVTc}}=3+02
$$

Calculate station and elevation of PV and PVC for sag curve,

$$
\begin{aligned}
& \text { elev }_{P V} T_{s}:=\text { elev }_{P V C C}-(0.02 .4000) \\
& \text { elev }_{\mathrm{PV}}^{1} \mathrm{Ts}=20 \mathrm{ft} \\
& P \vee T_{\mathrm{S}}:=\frac{\mathrm{L}_{\mathrm{c}}}{2}+4000+\frac{\mathrm{L}_{\mathrm{s}}}{2} \quad \mathrm{PV} \mathrm{~T}_{\mathrm{S}}=4287 \quad{\text { sta } \mathrm{aVTS}_{\mathrm{s}}}=42+87 \\
& e^{e l e v} \mathrm{PVCs}:=\text { elevpVTs }_{\mathrm{P}}+\frac{\mathrm{A} \cdot \mathrm{~L}_{\mathrm{s}}}{200} \quad \text { elevPVCs }=22.72 \mathrm{ft} \\
& P \vee C_{S}:=P V T_{S}-L_{s} \quad{P V C_{s}}=4015 \quad \text { sta }_{\text {PVCs }}=40+15 \\
& P V I_{\mathrm{S}}:=\mathrm{PV} \mathrm{~T}_{\mathrm{S}}-\frac{\mathrm{L}_{\mathrm{s}}}{2} \quad \quad \mathrm{PVI}_{\mathrm{S}}=4151 \quad \mathrm{sta}_{\mathrm{PV} \mid \mathrm{s}}=41+51
\end{aligned}
$$

Problem 3.10

Determine the elevation and stationing of the PVCs and PVTs.
$\mathrm{K}_{\mathrm{s}}:=136$
$\mathrm{K}_{\mathrm{C}}:=151$
(Table 3.2)
Calculate change in elevation between beginning and end of alignment
$\Delta_{\text {elev }}:=0.02-4000 \quad \Delta_{\text {elev }}=80$
Solve for A of both curves
$\frac{A^{2} \cdot K_{c}}{200}+\frac{A^{2} \cdot K_{s}}{200}+\frac{A \cdot\left(4000-K_{c} \cdot A-K_{s} \cdot A\right)}{100}=\Delta$ elev
$A=2.169$
Calculate lengths of crest and sag curves using common A
$\mathrm{L}_{\mathrm{c}}=\mathrm{K}_{\mathrm{C}} \cdot \mathrm{A} \quad \mathrm{L}_{\mathrm{c}}=327.479$
$\mathrm{L}_{\mathrm{s}}:=\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A} \quad \mathrm{L}_{\mathrm{s}}=294.948$
(Eq. 3.10)
stapVCc $:=0+00 \quad$ elev $_{\text {PVCc }}:=100 \mathrm{ft}$
(given)

Calculate station and elevation of PVT of sag and crest curves and PVC of sag curve

$$
\begin{aligned}
& \text { sta }_{\mathrm{PVTc}}:=\text { stapVCc }+\mathrm{L}_{\mathrm{c}} \quad \text { stapletc }=327.479 \quad \text { sta }_{\mathrm{PVTc}}=3+27.48 \\
& \text { elev }_{\text {PVTc }}:=\operatorname{elev}_{P V C c}-\frac{\left(A \cdot L_{c}\right)}{200} \quad \operatorname{elev}_{P V T c}=96.45 \mathrm{ft} \\
& \text { elev }_{\text {PVCs }}:=\operatorname{elev}_{P V T c}-\frac{\mathrm{A} \cdot\left(4000-L_{c}-L_{s}\right)}{100} \quad \operatorname{elev}_{P V C s}=23.2 \quad \mathrm{ft} \\
& \text { sta }_{\mathrm{PVCs}}:=\text { sta }_{\mathrm{PV} \mathrm{PC}_{\mathrm{C}}}+\left(4000-\mathrm{L}_{\mathrm{C}}-\mathrm{L}_{\mathrm{s}}\right) \quad \text { stapVCs }=3705.052 \quad \text { sta }_{\mathrm{PVCs}}=37+05.05 \\
& \text { elev }_{\text {PVTs }}:=\operatorname{elev}_{P V C s}-\frac{\mathrm{A} \cdot \mathrm{~L}_{\mathrm{s}}}{200} \quad \operatorname{elev}_{P V T s}=20 \quad \mathrm{ft} \quad \operatorname{sta}_{\mathrm{PVTs}}=40+00
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.11

Determine the elevation difference between the PVC and the high point of the curve.
$\mathrm{G}_{1}:=4.0 \%$ (given)
$K:=151$
solve for location of high point on curve
$x_{h}:=K \cdot|4.0| \quad x_{h}=604$
substituting for L, solve for the offset of the high point
$Y_{X}:=\frac{A}{200 L} \cdot x^{2}$
$L=K A$
$Y_{x h}:=\frac{1}{200 K} \cdot x_{h}{ }^{2} \quad Y_{x h}=12.08 \quad \mathrm{ft}$

Problem 3.12

Determine the elevation difference between the high point and the PVT.

$G_{1}:=3.0 \%$ (given)
$K=84$
calculate location of high point

$$
\begin{equation*}
x_{h}:=K\left|G_{1}\right| \quad x_{h}=252 \quad \mathrm{ft} \tag{Eq.3.11}
\end{equation*}
$$

knowing the station of the high point, calculate the station of the PV C

$$
P V C:=3337.43-x_{h} \quad P V C=3085.43
$$

knowing the station of the PVC , calculate the curve length

$$
\begin{align*}
& \mathrm{L}:=3718.26-\mathrm{PVC} \quad \mathrm{~L}=632.83 \mathrm{ft} \\
& \mathrm{~A}:=\frac{\mathrm{L}}{\mathrm{~K}} \quad \mathrm{~A}=7.534 \tag{Eq.3.10}
\end{align*}
$$

calculate the offset of the high point

$$
\begin{equation*}
Y_{x}:=\frac{A}{200 \cdot L} \cdot x_{h}^{2} \quad Y_{x}=3.78 \tag{Eq.3.7}
\end{equation*}
$$

calculate elevation difference between initial tangent point above high point to initial tangent point above end of curve

$$
\Delta y_{\tan }:=\left(L-x_{h}\right) \cdot \frac{G_{1}}{100} \quad \Delta y_{\tan }=11.425 \mathrm{ft}
$$

calculate final offset

$$
\begin{equation*}
Y_{f}:=\frac{A \cdot L}{200} \quad Y_{f}=23.838 \tag{Eq.3.9}
\end{equation*}
$$

elevation difference

$$
\mathrm{Y}_{\mathrm{f}}-\Delta \mathrm{y}_{\tan }-\mathrm{Y}_{\mathrm{x}}=8.633 \mathrm{ft}
$$

Problem 3.13

Determine the stationing and elevation of the high point on the curve.

$$
\begin{align*}
& \mathrm{K}:=114 \quad \mathrm{G}_{1}:=2.5 \quad \mathrm{G}_{2}:=-1.0 \\
& A:=\left|G_{2}-G_{1}\right| \quad A=3.5 \\
& \text { (given) } \\
& \text { PVT := } 11425 \\
& \text { point }:=11275 \quad \text { elev }_{\text {point }}:=240 \\
& \text { calculate curve length } \\
& \mathrm{L}:=\mathrm{K} \cdot \mathrm{~A} \quad \mathrm{~L}=399 \tag{Eq.3.10}\\
& \text { calculate location of PVC } \\
& P V C:=P V T-L \quad P V C=11026 \quad s t a_{\mathrm{PVC}}=110+26 \\
& x:=\text { point }- \text { PVC } \quad x=249 \\
& \text { calculate offset of point above curve } \\
& Y_{\text {point }}:=\frac{A}{200 \cdot L} \cdot x^{2} \quad Y_{\text {point }}=2.719 \tag{Eq.3.7}\\
& x \cdot \frac{G_{1}}{100}-Y_{\text {point }}=3.506 \\
& \text { from offset of point, calculate elevation of PVC } \\
& \text { elev }_{\text {PVC }}:=\text { elev }_{\text {point }}-3.506 \quad \text { elevPVC }=236.494 \\
& \text { calculate location of high point } \\
& x_{h}:=K \cdot G_{1} \quad x_{h}=285 \tag{Eq.3.11}\\
& Y_{h}:=\frac{A}{200 \cdot L} \cdot x_{h}{ }^{2} \quad Y_{h}=3.562 \tag{Eq.3.7}\\
& \text { calculate station and elevation of high point } \\
& \text { elev }_{h p}:=\operatorname{elev}_{P V C}+Y_{h} \quad \text { elev }_{h p}=240.06 \quad f t \\
& P V C+x_{h}=11311 \quad s t a_{h p}=113+11
\end{align*}
$$

Problem 3.14

Determine if the curve is long enough to provide passing

 sight distance?```
\(G_{1}:=1 \quad G_{2}:=-0.5\)
\(A:=\left|G_{1}-G_{2}\right| \quad A=1.5 \quad\) (given)
sta \(_{\mathrm{PVC}}:=5484 \quad\) sta \(\mathrm{PVI}:=5744\)
\(\mathrm{L}:=\left(\right.\) sta \(_{\mathrm{PVI}}-\) stapVC \() \cdot 2 \quad \mathrm{~L}=520\)
```

is this curve long enough? calculate actual K -value and compare to required
$K:=\frac{L}{A} \quad K=346.667$
K from Table 3.4 for $55 \mathrm{mi} / \mathrm{h}$ is 1407 , this curve is not long enough.
problem can also be done using PSD equation (3.25):

$$
\begin{align*}
& \text { (assuming PSD > L) } \\
& \mathrm{L}:=520 \quad \text { (see above) } \\
& \mathrm{A}:=|1-(-.5)| \quad \mathrm{A}=1.5 \\
& \mathrm{~L}=2 \cdot \mathrm{PSD}-\frac{2800}{\mathrm{~A}} \tag{Eq.3.25}
\end{align*}
$$

$$
P S D:=\frac{L+\frac{2800}{\mathrm{~A}}}{2} \quad \mathrm{PSD}=1193.333 \mathrm{ft}
$$

From Table 3.2, for $55 \mathrm{mi} / \mathrm{h}, 1985 \mathrm{ft}$ of passing sight distance is required
Therefore, curve is not adequate for $55 \mathrm{mi} / \mathrm{h}$

## Problem 3.15

## Determine what length of existing highway must be reconstructed.

$\mathrm{K}_{\mathrm{s}}:=96$
(Table 3.3)
$\mathrm{K}_{\mathrm{c}}:=84$
(Table 3.2)
$\Delta_{\text {elev }}:=24$
(given)
Set total of final offsets equal to change in elevation
$\frac{\mathrm{L}_{\mathrm{s}} \cdot \mathrm{A}}{200}+\frac{\mathrm{L}_{\mathrm{c}} \cdot \mathrm{A}}{200}=24$
substitute in for $L_{c}$ and $L_{s}$ and solve for $A$
$\mathrm{L}_{\mathrm{s}}:=\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A} \quad \mathrm{L}_{\mathrm{c}}:=\mathrm{K}_{\mathrm{c}} \cdot \mathrm{A}$
$\frac{K_{s} \cdot A^{2}}{200}+\frac{K_{c} \cdot A^{2}}{200}=24$
$A=5.164$ !
Total length of the alignment is the length of both curves plus 100 ft for half of the overpass

$$
L_{t}:=K_{s} \cdot A+K_{c} \cdot A+100 \quad L_{t}=1029.516
$$

this length must be cleared on either side of the centerline, so

$$
L_{\text {total }}=2 \cdot L_{t} \quad L_{\text {total }}=2059.03 \quad \mathrm{ft}
$$

## Provide the lengths of the curves and constant-grade section.

## Problem 3.16

$50 \mathrm{mi} / \mathrm{h}$ design speed
$\mathrm{K}_{\mathrm{c}}:=84$
$\mathrm{K}_{\mathrm{s}}:=96$
station of $\mathrm{PVC}_{\mathrm{c}}=127+00 \quad$ sta $\mathrm{PVCc}_{\mathrm{c}}:=12700$
station of $\mathrm{PVT}_{\mathrm{s}}=162+00 \quad$ stapVTs $:=16200$
calculate change in elevation between ramp sections
$\Delta_{\text {elev }}:=138-97 \quad \Delta_{\text {elev }}=41$
calculate total length of alignment
$L_{\text {total }}:=$ stapVTs - stapVCc $L_{\text {total }}=3500$
set change in elevation equal to sum of offsets and change in elevation of constant grade section
$\left(Y_{f c}-\Delta Y_{d}\right)+\Delta Y_{c o n}+Y_{f s}=41$
substitute in for final offsets using Equation 3.9

$$
\left(\frac{A_{c} \cdot L_{c}}{200}-\frac{4 \cdot 0 \cdot L_{c}}{100}\right)+\frac{G_{c o n} \cdot L_{c o n}}{100}+\frac{A_{s} \cdot L_{s}}{200}=\Delta_{\mathrm{elev}}
$$

substitute for $L_{\infty} L_{\text {c }}$, and $L_{\text {s }}$
$L=K A$
$\mathrm{L}_{\mathrm{c}}+\mathrm{L}_{\text {con }}+\mathrm{L}_{\mathrm{s}}=\mathrm{L}_{\text {total }} \quad \mathrm{L}_{\text {con }}=3500-\mathrm{K}_{\mathrm{c}}{ }^{*} \mathrm{~A}_{\mathrm{c}}-\mathrm{K}_{\mathrm{s}}{ }^{*} \mathrm{~A}_{\mathrm{s}}$
$\frac{\mathrm{K}_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{c}}{ }^{2}}{200}-\frac{\left(4 \cdot 0 \cdot \mathrm{~K}_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{c}}\right)}{100}+\frac{\mathrm{G}_{\mathrm{con}} \cdot\left[\mathrm{L}_{\text {total }}-\left(\mathrm{K}_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{c}}\right)-\left(\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}}\right)\right]}{100}+\frac{\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}}{ }^{2}}{200}=\Delta_{\text {elev }}$
substitute for $A_{c}$ and $A_{s}$
$A_{c}=\left|4.0-G_{\infty}\right| \quad A_{s}=\left|G_{\infty}-0\right| \quad A_{s}=\left|G_{\infty}\right|$
solve for $G_{c o n}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{aligned}
& \frac{K_{c} \cdot\left(4+G_{c o n}\right)^{2}}{200}-\frac{\left[4.0 \cdot K_{C} \cdot\left(4+G_{\text {con }}\right)\right]}{100}+\frac{G_{\text {con }} \cdot\left[L_{\text {total }}-\left[K_{C} \cdot\left(4+G_{\text {con }}\right)\right]-K_{S} \cdot G_{c o n}\right]}{100}+\frac{K_{\mathrm{s}} \cdot G_{\text {con }}{ }^{2}}{200}=\Delta_{\mathrm{elev}} \\
& \mathrm{G}_{\mathrm{con}}=1.579 \\
& A_{c}:=|4.0-1.579| \quad A_{c}=5.579 \\
& A_{s}:=\left|G_{\text {con }}\right| \quad A_{S}=1.579 \\
& \mathrm{~L}_{\mathrm{c}}:=\mathrm{K}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{c}} \quad \mathrm{~L}_{\mathrm{c}}=468.64 \quad \mathrm{ft} \\
& L_{s}:=K_{s} \cdot A_{s} \quad L_{s}=151.6 \quad f t \\
& L_{\text {con }}:=L_{\text {total }}-L_{c}-L_{s} \\
& \mathrm{~L}_{\text {con }}=2879.77 \quad \mathrm{ft}
\end{aligned}
$$

## Problem 3.17

## Determine the lowest grade possible for the constant-grade

 section that will still complete this alignment.```
\(P V C_{s}:=475 \quad\) elev \(_{\text {PVCs }}:=82\)
PVT \(_{\mathrm{C}}:=4412 \quad\) elev \(_{\text {PVTc }}:=131.2\)
```

calculate total length and change in elevation

$$
\begin{align*}
& L_{\text {total }}:=P V T_{c}-P V C_{s} \quad L_{\text {total }}=3937 \\
& \text { elev }_{\text {diff }}:=\text { elev }_{P V T c}-\text { elever }_{P V C s} \quad \text { elev }{ }_{\text {diff }}=49.2 \\
& \mathrm{~K}_{\mathrm{s}}:=96 \tag{Table3.3}\\
& \mathrm{~K}_{\mathrm{c}}:=84 \tag{Table3.2}
\end{align*}
$$

set total elevation change equal to sum of offsets and changes in elevation from constant grade

$$
\begin{align*}
& Y_{\mathrm{fs}}+\Delta \mathrm{y}_{\mathrm{con}}+\mathrm{Y}_{\mathrm{fc}}=\text { elev }_{\text {diff }}+\frac{\mathrm{L}_{\mathrm{s}} \cdot\left(\left|\mathrm{G}_{1 \mathrm{~s}}\right|\right)}{100}+\frac{\mathrm{L}_{\mathrm{c}} \cdot\left(\left|\mathrm{G}_{2 \mathrm{c}}\right|\right)}{100} \\
& G_{1 \mathrm{~s}}:=-1 \quad G_{2 \mathrm{c}}:=-1 \tag{given}\\
& G_{\mathrm{con}}=G_{2 \mathrm{~s}}=G_{1 \mathrm{c}}
\end{align*}
$$

substitue values for final offsets using equation 3.9

$$
\frac{A_{s} \cdot L_{s}}{200}+\frac{G_{c o n}}{100} \cdot\left(L_{\text {total }}-L_{s}-L_{c}\right)+\frac{A_{c} \cdot L_{c}}{200}=\text { elev }_{\text {diff }}+\frac{L_{s} \cdot\left(\left|G_{1 s}\right|\right)}{100}+\frac{L_{c} \cdot\left(\left|G_{2 c}\right|\right)}{100}
$$

substitute in for A_{s} and A_{c}

$$
A_{s}=\left|G_{c o n}-G_{1 s}\right| \quad A_{c}=\left|G_{c o n}-G_{2 c}\right|
$$

solve for G_{∞} n

$$
\begin{aligned}
& \mathrm{G}_{\text {con }}=1.379 \quad \%
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{aligned}
& \frac{(\mathrm{G}+1)^{2} \cdot \mathrm{~K}_{\mathrm{s}}}{200}+\frac{(\mathrm{G}+1)^{2} \cdot \mathrm{~K}_{\mathrm{c}}}{200}+49.2=3937 \cdot\left(\frac{\mathrm{G}}{100}\right) \\
& \mathrm{G}=1.38 \quad \%
\end{aligned}
$$

Problem 3.18

Determine the elevation difference.
$\mathrm{G}_{1 \mathrm{c}}:=3 \quad \mathrm{G}_{\mathrm{con}}:=-5 \quad \mathrm{G}_{2 \mathrm{~s}}:=2$
$\mathrm{K}_{\mathrm{c}}:=84$
(Table 3.2)
$K_{s}:=96$
$A_{c}:=\left|G_{1 c}-G_{c o n}\right| \quad A_{c}=8$
$A_{s}:=\left|G_{\text {con }}-G_{2 s}\right| \quad A_{S}=7$
calculate lengths of crest and sag curve, subtract from total length to find length of constant grade
$\mathrm{L}_{\mathrm{c}}:=\mathrm{K}_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{c}} \quad \mathrm{L}_{\mathrm{c}}=672$
$\mathrm{L}_{\mathrm{s}}:=\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}} \quad \mathrm{L}_{\mathrm{s}}=672$
$L_{\text {con }}:=3000-L_{s}-L_{c} \quad L_{\text {con }}=1656$
Using final offset equation 3.9, calculate the total elevation difference

$$
\begin{aligned}
& \left(Y_{f c}-\Delta Y_{c}\right)+\Delta Y_{c o n}+\left(Y_{f s}-\Delta Y_{s}\right)=\text { elevation difference } \\
& Y_{f c}:=\frac{A_{c} \cdot L_{c}}{200} \quad Y_{f c}=26.88 \quad \Delta Y_{c}:=\frac{G_{1 c}}{100} \cdot L_{c} \quad \Delta Y_{c}=20.16 \\
& Y_{f s}:=\frac{A_{s} \cdot L_{s}}{200} \quad Y_{f s}=23.52 \quad \Delta Y_{s}:=\frac{G_{2 s}}{100} \cdot L_{s} \quad \Delta Y_{s}=13.44 \\
& \Delta Y_{c o n}:=\frac{\left|G_{c o n}\right|}{100} \cdot L_{\text {con }} \quad \Delta Y_{\text {con }}=82.8 \\
& \Delta Y:=Y_{f c}-\Delta Y_{c}+\Delta Y_{\text {con }}+Y_{f s}-\Delta Y_{s} \\
& {\left[\frac{A_{c} \cdot L_{c}}{200}-\left(\frac{G_{1 c}}{100} \cdot L_{c}\right)\right]+\left(\frac{\left|G_{c o n}\right|}{100} \cdot L_{\text {con }}\right)+\frac{A_{s} \cdot L_{s}}{200}-\left(\frac{\left|G_{2 s}\right|}{100} \cdot L_{s}\right)} \\
& \Delta Y=99.6 \quad \text { ft }
\end{aligned}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Alternative Solution using parabolic equation directly

$$
\begin{aligned}
& c_{c}:=100 \quad \text { arbitrary } \\
& a_{c}:=\frac{G_{c o n}-G_{1 c}}{2 \cdot \frac{L_{c}}{100}} \quad a_{c}=-0.595 \\
& b_{c}:=G_{1 c} \\
& x_{c}:=\frac{L_{c}}{100} \\
& y_{c}:=\left(a_{c} \cdot x_{c}^{2}\right)+b_{c} \cdot x_{c}+c_{c} \\
& y_{c o n}:=y_{C}-\left(\frac{\left|G_{c o n}\right|}{100} \cdot L_{\text {con }}\right) \quad y_{C}=93.28 \\
& a_{s}:=\frac{G_{2 s}-G_{c o n}}{L_{s}} \\
& b_{s}:=G_{c o n} \\
& x_{s}:=\frac{L_{s}}{100} \\
& y_{s}:=a_{s} \cdot x_{s}^{2}+b_{s} \cdot x_{s}+y_{\text {con }}=10.48 \\
& \Delta Y:=c_{c}-y_{S}
\end{aligned}
$$

Problem 3.19

Determine the common grade between the sag and crest curves and determine the elevation difference between the PVCs and PVTc.
$\mathrm{G}_{1 \mathrm{~s}}:=-3.0 \quad \mathrm{G}_{2 \mathrm{c}}:=2.0 \quad \mathrm{G}_{2 \mathrm{~s}}=\mathrm{G}_{1 \mathrm{c}}$ (given)
$L_{\text {total }}:=1275$
$\mathrm{K}_{\mathrm{c}}:=84$
$\mathrm{K}_{\mathrm{s}}:=96$
$L_{\text {total }}=L_{s}+L_{c}$
substitute for L_{s} and L_{c}
$\mathrm{L}=\mathrm{KA} \quad \mathrm{L}_{\text {total }}=\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{s}}+\mathrm{K}_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{c}}$
substitute for A_{s} and A_{o}
$A_{S}=G-G_{1 s} \quad A_{c}=G-G_{2 c}$
solve for G

$$
L_{\text {total }}=K_{s} \cdot\left(G-G_{1 s}\right)+K_{c} \cdot\left(G-G_{2 c}\right) \quad G:=\frac{L_{\text {total }}+K \cdot G_{1 s}+K \cdot G_{2 c} "}{K_{s}+K_{c}}
$$

$G=6.417 \quad \%$
calculate A values, then lengths of crest and sag curves

$$
\begin{array}{ll}
A_{s}:=G-G_{1 s} & A_{S}=9.417 \\
A_{c}:=G-G_{2 c} & A_{c}=4.417 \\
L_{s}:=K_{s} \cdot A_{s} & L_{s}=904 \\
L_{c}:=K_{c} \cdot A_{c} & L_{c}=371 \tag{Eq.3.10}
\end{array}
$$

using final offset equation 3.9, calculate total elevation difference over alignment

$$
\text { elev }_{\text {diff }}:=\frac{A_{s} \cdot L_{s}}{200}+\frac{G_{1 s}}{100} \cdot L_{s}+\frac{G_{2 c}}{100} \cdot L_{c}+\frac{A_{c} \cdot L_{c}}{200} \quad \text { elev }_{\text {diff }}=31.06 \quad \mathrm{ft}
$$

Problem 3.20

Determine the minimum necessary clearance height of the overpass and the resultant elevation of the bottom of the overpass over the PVI.

For $70 \mathrm{mi} / \mathrm{h}$ design speed, $\quad K=181$
(Table 3.3)
$A=|3-(-6)| \quad A=9$
(given)
$L=K \cdot A \quad L=1629$
For $70 \mathrm{mi} / \mathrm{h}$ design speed,

$$
\begin{equation*}
S S D:=730 \tag{Table3.1}
\end{equation*}
$$

Using equation for $\mathrm{SSD}<\mathrm{L}$, solve for minimum clearance height

$$
\begin{array}{ll}
L=\frac{A \cdot S S D^{2}}{800 \cdot\left(H_{C}-5\right)} \quad H_{C}:=\frac{A \cdot S S D^{2}}{800 \cdot L}+5 \\
H_{C}=8.68 \mathrm{ft}
\end{array}
$$

This clearance is not enough, use the desirable 16.5 ft of clearance

$$
\begin{align*}
& H_{\mathrm{E} \cdot}=16.5 \mathrm{ft} \\
& Y_{m}:=\frac{\mathrm{A} \cdot \mathrm{~L}}{800} \quad Y_{\mathrm{m}}=18.326 \quad \mathrm{ft} \tag{Eq.3.8}
\end{align*}
$$

clearance at the PVI is the sum of the middle offset and the clearance height provided

$$
\text { clearance }_{P V I}:=Y_{m}+H_{c} \quad \text { clearance }_{\mathrm{PV}}=34.83 \quad \mathrm{ft}
$$

Determine the highest possible value of the final grade in daytime and nighttime conditions.

```
\(P \vee I:=1000 \quad P V C:=400\)
elev. \(_{P V I}:=138 \quad\) elev \(_{\text {overpass }}:=162\)
(given)
SSD := 730
\(L:=(P V I-P V C) \cdot 2 \quad L=1200\)
```

for daytime conditions, overpass clearance governs
since $L>S S D$
$S S D=\sqrt{\frac{800 \cdot L}{A} \cdot\left(H_{c}-5\right)}$
substitute in equation for $\mathrm{H}_{c}=$ height of overpass minus height of PVI plus middle offset

$$
H_{\mathrm{c}}=\text { elev }_{\text {overpass }}-\left(\text { elev }_{\mathrm{PV}}+\frac{\mathrm{A} \cdot \mathrm{~L}}{800}\right)
$$

solve for A
$S 5 D=\sqrt{\frac{800 \cdot L}{A} \cdot\left[162-\left(138+\frac{A \cdot L}{8100}\right)-5\right]}$

$$
A=9.245
$$

calculate G_{2}

$$
G_{1}:=-4 \quad G_{2}:=G_{1}+A \quad G_{2}=5.245
$$

For nighttime conditions, headlights govern
at $70 \mathrm{mi} / \mathrm{h}$

$$
K_{s}:=181
$$

(Table 3.3)
check for sufficient length
$L=K_{S} \cdot A \quad L=1673.395 \quad$ which is greater than 1200
Solve for A

$$
\begin{array}{ll}
A:=\frac{1200}{K_{S}} & A=6.63 \tag{Eq.3.10}\\
\mathcal{S}_{2}:=A+G_{1} & G_{2}=2.63 \quad \%
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

First find clearance based on SSD
$\mathrm{K}:=79$
$\mathrm{G}_{1}:=-2 \quad \mathrm{G}_{2}:=2$
(given)
$A:=\left|G_{1}-G_{2}\right| \quad A=4$
$L:=K \cdot A \quad L=316$
SSD := 360
(Table 3.1)
Since $S S D>L$, use Eq. 3.30 to get H_{c}

$$
\begin{equation*}
L=2 \cdot S S D-\frac{800 \cdot\left(H_{C}-5\right)}{A} \quad H_{C}:=\frac{A \cdot(2 \cdot S S D-L)}{800}+5 \tag{Eq.3.30}
\end{equation*}
$$

$\mathrm{H}_{\mathrm{c}}=7.02 \quad \mathrm{ft}$
7.02 ft is less than the AASHTO desirable clearance height of 16.5 ft , so 16.5 ft will be provided

$$
H_{c}:=16.5
$$

now find necessary elevation of the PVI

$$
\operatorname{elev}_{P V I}=-H_{c}-Y_{m}
$$

$$
\begin{equation*}
Y_{m}:=\frac{A \cdot L}{800} \quad Y_{m}=1.58 \tag{Eq.3.8}
\end{equation*}
$$

$$
\operatorname{elev}_{P V I}:=-H_{C}-Y_{m} \quad \operatorname{elev}_{P V I}=-18.08 \quad \mathrm{ft}
$$

Problem 3.23

Determine the highest possible design speed for the curve.

necessary middle ordinate distance is the distance from the centerline minus $1 / 2$ the inside lane

$$
M_{S}:=34-6 \quad M_{S}=28 \quad \text { (given) }
$$

First try $50 \mathrm{mi} / \mathrm{h}$
$\mathrm{e}:=.08 \quad \mathrm{~g}:=32.2 \quad \mathrm{~V}:=50 \quad$ (given)
$\mathrm{f}_{\mathrm{S}}:=.14$
calculate radius to vehicle travel path

$$
\begin{equation*}
R_{V}:=\frac{(\mathrm{V}-1.467)^{2}}{\mathrm{~g} \cdot\left(\mathrm{e}+\mathrm{f}_{\mathrm{S}}\right)} \quad \mathrm{R}_{\mathrm{V}}=759.489 \tag{Eq.3.34}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{SSD}_{50}:=425 \tag{Table3.1}
\end{equation*}
$$

calculate necessary middle ordinate for $50 \mathrm{mi} / \mathrm{h}$

$$
\begin{equation*}
M_{S_{50}}:=R_{v} \cdot\left[1-\cos \left[\left(\frac{90 \cdot S_{S D} D_{50}}{\pi \cdot R_{v}}\right) \cdot \operatorname{deg}\right]\right] \quad M_{S_{50}}=29.53 \mathrm{ft} \tag{Eq.3.42}
\end{equation*}
$$

this is larger than 28 ft , so design speed is too high
try $45 \mathrm{mi} / \mathrm{h} \quad \mathrm{V}:=45$
$\mathrm{f}_{\mathrm{S}}:=.145$
(Table 3.5)
calculate radius to vehicle travel path

$$
\begin{equation*}
R_{V}:=\frac{(V-1.467)^{2}}{g \cdot\left(e+f_{s}\right)} \quad R_{V}=601.516 \tag{Eq.3.34}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{SSD}_{45}:=360 \tag{Table3.1}
\end{equation*}
$$

calculate necessary middle ordinate for $45 \mathrm{mi} / \mathrm{h}$

$$
\begin{equation*}
M_{S_{45}}:=R_{v} \cdot\left[1-\cos \left[\left(\frac{90 \cdot S S D_{45}}{\pi \cdot R_{v}}\right) \cdot \operatorname{deg}\right]\right] \quad M_{S_{45}}=26.73 \quad \mathrm{ft} \tag{Eq.3.42}
\end{equation*}
$$

this is less than 28 ft , so $45 \mathrm{mi} / \mathrm{h}$ is the maximum design speed

Determine the station of the PT.

$$
\begin{aligned}
& \operatorname{sta}_{\mathrm{PC}}:=12410 \quad \text { sta }_{\mathrm{PI}}:=13140 \\
& \mathrm{e}_{\mathrm{M}}:=0.06 \quad \vee \quad \mathrm{~V}:=70 \quad \text { g }:=32.2 \\
& \mathrm{f}_{\mathrm{S}}:=0.10
\end{aligned}
$$

calculate radius

$$
\begin{equation*}
R_{V}:=\frac{(V \cdot 1.467)^{2}}{g \cdot\left(e+f_{S}\right)} \quad R_{V}=2046.8 \tag{Eq.3.34}
\end{equation*}
$$

since road is single-lane, $\quad \underset{\sim}{R}:=R_{V}$
$R=2046.8$
$\mathrm{m}_{\mathrm{M}}:=\operatorname{sta}_{\mathrm{PI}}-\operatorname{sta}_{\mathrm{PC}} \quad \mathrm{T}=730$
knowing tangent length and radius, solve for central angle

$$
\begin{equation*}
\mathrm{T}=\mathrm{R} \cdot \tan \left(\frac{\Delta}{2}\right) \quad \Delta:=2 \cdot \operatorname{atan}\left(\frac{\mathrm{~T}}{\mathrm{R}}\right) \quad \Delta=39.258 \mathrm{deg} \quad \Delta \mathrm{M}:=39 \tag{Eq.3.36}
\end{equation*}
$$

calculate length

$$
\begin{align*}
& L_{M}:=\frac{\pi}{180} \cdot R \cdot(\Delta) \quad L=1393.2 \tag{Eq.3.39}\\
& \operatorname{sta}_{\mathrm{PT}}:=\operatorname{sta}_{\mathrm{PC}}+\mathrm{L} \quad \operatorname{sta}_{\mathrm{PT}}=13803.229 \quad \operatorname{sta}_{\mathrm{PT}}=138+03.23
\end{align*}
$$

$$
\begin{aligned}
& s t a_{\mathrm{P}}:=270000 \quad \mathrm{~T}=510 \quad \Delta:=40 \quad \text { (given) } \\
& \text { sta }_{\mathrm{PC}}:=\operatorname{sta}_{\mathrm{PI}}-\mathrm{T} \quad \text { sta }_{\mathrm{PC}}=269490 \quad \text { sta }_{\mathrm{PC}}=2694+90 \\
& \mathrm{~T}=\mathrm{R} \cdot \tan \left(\frac{\Delta}{2}\right) \\
& R=\frac{T}{\tan \left(\frac{\Delta}{2} \cdot \operatorname{deg}\right)} \quad R=1401.213 \\
& L:=\frac{\pi}{180} \cdot R \cdot \Delta \quad L=978.232 \\
& \operatorname{sta}_{\mathrm{PT}}:=\operatorname{sta}_{\mathrm{PC}}+\mathrm{L} \quad \text { sta }_{\mathrm{PT}}=270468.232 \quad \text { sta }_{\mathrm{PT}}=2704+68.23
\end{aligned}
$$

Since the road is 4 lanes with $10-\mathrm{ft}$ lanes, the distance from the centerline to R_{v} is $10 \mathrm{ft}+5 \mathrm{ft}$

$$
\begin{aligned}
& R_{V}:=R-10-5 \quad R_{V}=1386.213 \\
& \mathrm{e}:=0.09 \quad \mathrm{f}_{\mathrm{S}}:=0.08 \quad \mathrm{~g}:=32.2 \quad \text { (given) } \\
& R_{V}=\frac{V^{2}}{g \cdot\left(f_{S}+\frac{e}{100}\right)} \\
& V=\sqrt{R_{V} \cdot g \cdot\left(f_{s}+e\right)} \quad V=87.11 \quad V:=\frac{V}{1.467} \quad V=59.38 \quad V \text { is } 60 \mathrm{mi} / \mathrm{h}
\end{aligned}
$$

Problem 3.26

Determine the rate of superelevation required for this curve.

design speed is $70 \mathrm{mi} / \mathrm{h}$

$$
\begin{align*}
& \mathrm{R}_{\mathrm{v}}:=900 \quad \mathrm{~V}:=70 \quad \text { (given) } \\
& \mathrm{f}_{\mathrm{s}}:=0.10 \quad \text { for } 70 \mathrm{mi} / \mathrm{h} \\
& \mathrm{e}:=\frac{(\mathrm{V} \cdot 1.467)^{2}}{\mathrm{~g} \cdot \mathrm{R}_{\mathrm{V}}}-\mathrm{f}_{\mathrm{S}} \tag{Eq.3.34}\\
& \mathrm{e}=0.264 \quad \frac{\mathrm{ft}}{\mathrm{ft}} \quad \text { or } 26.4 \%
\end{align*}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski.
Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.27

Determine the superelevation required at the design speed. Also, compute the degree of curve, length of curve, and stationing of the PC annd PT.
$V:=100 \quad R:=1000 \quad \Delta:=30$
(given)
sta $_{\mathrm{PI}}:=112510 \quad \mathrm{f}_{\mathrm{s}}:=0.20 \quad \mathrm{~g}:=32.2$

Since the racetrack is single-lane, $\quad R_{V}:=R \quad R_{V}=1000$
Solve for required superelevation
$e+f_{S}=\frac{(V \cdot 1.467)^{2}}{g \cdot R_{V}} \cdot\left(1-f_{S} \cdot e\right)$
$e=0.413$
solve for degree of curve
$D:=\frac{18000}{\pi \cdot R} \quad D=5.73 \quad$ degrees
use this and Equation 3.39 to solve for length of curve

$$
\begin{array}{ll}
\mathrm{R}=\frac{18000}{\pi \cdot \mathrm{D}} & \mathrm{~L}=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta \tag{Eq.3.39}\\
\mathrm{~L}:=\frac{100 \cdot \Delta}{\mathrm{D}} & \mathrm{~L}=523.6 \mathrm{ft}
\end{array}
$$

calculate tangent length

$$
\begin{array}{lll}
\mathrm{T}:=\mathrm{R} \cdot \tan \left(\left(\frac{\Delta}{2} \cdot \operatorname{deg}\right)\right) & \mathrm{T}=267.949 & \tag{Eq.3.36}\\
\text { sta }_{\mathrm{PC}}:=\operatorname{sta}_{\mathrm{PI}}-\mathrm{T} & \text { sta } \mathrm{PC}=112242.051 & \text { sta }_{\mathrm{PC}}=1122+42.05 \\
\text { sta }_{\mathrm{PT}}:=\operatorname{sta} \mathrm{PC}_{\mathrm{P}}+\mathrm{L} & \text { sta }_{\mathrm{PT}}=112765.65 & \text { sta }_{\mathrm{PT}}=1127+65.65
\end{array}
$$

Problem 3.28

Determine the radius and stationing of the PC and PT.
sta $_{P I}:=25050$
$\mathrm{q}:=32.2 \quad \mathrm{~V}_{\mathrm{m}}:=65$
(given)
e $:=0.08 \quad \Delta:=35$
$\mathrm{f}_{\mathrm{S}}:=0.11$
(Table 3.5)
calculate radius

$$
\begin{equation*}
R_{V}:=\frac{(V \cdot 1.467)^{2}}{g \cdot\left(f_{s}+e\right)} \quad R_{V}=1486.2 \quad \mathrm{ft} \tag{Eq.3.34}
\end{equation*}
$$

since the road is two-lane with 12 - ft lanes
$R:=R_{v}+6 \quad R=1492.2 \quad f t$
calculate length and tangent length of curve
L: $:=\frac{\pi}{180} \cdot R \cdot \Delta \quad \mathrm{~L}=911.534$
$\mathrm{T}:=\mathrm{R} \cdot \tan \left[\left(\frac{\Delta}{2}\right) \cdot \operatorname{deg}\right] \quad \mathrm{T}=470.489$
sta $_{P C}:=$ sta $_{P I}-T \quad$ sta $_{P C}=24579.511 \quad$ sta $_{P C}=245+79.51$
sta $_{\text {PT }}:=$ sta $_{P C}+L \quad$ sta $_{\text {PT }}=25491.044 \quad$ sta $_{\text {PT }}=254+91.04$

Problem 3.29

Give the radius, degree of curvature, and length of curve that you

 would recommend.$\Delta:=40$
2 10-ft lanes
for a 70 mph design speed with e restricted to 0.06 ,

$$
\begin{equation*}
R_{V}:=2050 \mathrm{ft} \tag{Table3.5}
\end{equation*}
$$

$$
\begin{array}{lll}
\mathrm{R}:=\mathrm{R}_{\mathrm{v}}+\frac{5}{2} & \mathrm{R}=2052.5 \mathrm{ft} \\
\mathrm{~L}:=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta & \mathrm{~L}=1432.92 \mathrm{ft} \\
\mathrm{D}:=\frac{18000}{\pi \cdot \mathrm{R}} & \mathrm{D}=2.79 & \text { degrees } \tag{Eq.3.35}
\end{array}
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.30

Determine the station of the PI and how much distance must be cleared from the center of the lane to give adequate SSD.
$L:=400 \quad$ e $:=0.10 \quad$ stapC $:=1735$
$\mathrm{R}_{\mathrm{V}}:=555$
since the ramp is single-lane, $\quad \mathrm{R}:=\mathrm{R}_{\mathrm{V}}$
solve for Δ using length and radius
$L=\frac{\pi}{180} \cdot R \cdot \Delta \quad \Delta:=\frac{L \cdot 180}{\pi \cdot R} \quad \Delta=41.294$
$\mathrm{T}:=\mathrm{R} \cdot \tan \left(\frac{\Delta}{2} \cdot \operatorname{deg}\right) \quad \mathrm{T}=209.132$
$\operatorname{sta}_{\mathrm{PI}}:=\operatorname{sta}_{\mathrm{PC}}+\mathrm{T} \quad \operatorname{sta}_{\mathrm{PI}}=1944.132 \quad \operatorname{sta}_{\mathrm{PI}}=19+44.13$

SSD := 360
$M_{S}:=R_{V} \cdot\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{V}} \cdot \operatorname{deg}\right)\right) \quad M_{S}=28.93 \quad f t$
(given)
(Table 3.5)

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.31

Determine the design speed used.

Since the ramp is a single 12 -foot lane, center of roadway is center of traveled path
$\Delta:=90 \quad \mathrm{~L}:=628 \quad \mathrm{M}_{\mathrm{S}}:=19.4$
(given)
using L and Δ, solve for R
$\mathrm{L}=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta \quad \mathrm{R}:=\frac{\mathrm{L} \cdot 180}{\pi \cdot \Delta} \quad \mathrm{R}=399.8$
$R_{v}:=R \quad R_{v}=399.8$
since Ms and Rv are known, we can use Equation 3.43 to find SSD
$\mathrm{SSD}:=\frac{\pi \cdot \mathrm{R}_{\mathrm{v}}}{90 \cdot \operatorname{deg}} \cdot\left(\operatorname{acos}\left(\frac{\mathrm{R}_{\mathrm{v}}-\mathrm{M}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{v}}}\right)\right) \quad \mathrm{SSD}=250.1 \quad \mathrm{ft}$
from Table 3.1, SSD for $35 \mathrm{mi} / \mathrm{h}$ is 250 ft - curve is designed for $35 \mathrm{mi} / \mathrm{h}$

Alternative Solution

since Ms and Rv are known, we can solve Equation 3.42 to find SSD

$$
\begin{aligned}
& M_{S}=R_{v} \cdot\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{v}} \cdot \operatorname{deg}\right)\right) \\
& S S D=250.1 \mathrm{ft}
\end{aligned}
$$

from Table 3.1, SSD for $35 \mathrm{mi} / \mathrm{h}$ is 250 ft - curve is designed for $35 \mathrm{mi} / \mathrm{h}$

Cornering Check

$$
\begin{align*}
& V:=35 \cdot 1.4667 \quad V=51.3 \\
& \text { for } 35 \mathrm{mi} / \mathrm{h}, \quad f_{S}:=0.155 \tag{Table3.5}\\
& g:=32.2 \\
& e:=\frac{V^{2}}{g \cdot R_{V}}-f_{S} \quad e=0.05
\end{align*}
$$

So this combination of speed, radius, and superelevation is OK

Problem 3.32

Determine a maximum safe speed to the nearest $5 \mathrm{mi} / \mathrm{h}$.

$\Delta:=34 \quad$ e $:=0.08$
PT :=12934 PC := 12350
$\mathrm{L}:=\mathrm{PT}-\mathrm{PC} \quad \mathrm{L}=584$
since this is a two-lane road with 12 -ft lanes, $M_{S}:=20.3+\frac{12}{2} \quad M_{S}=26.3$
$\mathrm{L}=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta \quad \mathrm{R}:=\frac{\mathrm{L} \cdot 180}{\pi \cdot \Delta} \quad \mathrm{R}=984.139$
(Eq. 3.39)
$R_{V}:=R-6 \quad R_{v}=978.139$

First, try $50 \mathrm{mi} / \mathrm{h}$
SSD := 425
(Table 3.1)
$M_{S}:=R_{V} \cdot\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{V}} \cdot \operatorname{deg}\right)\right) \quad M_{S}=22.99$
23 ft is less than 26.3 ft so $50 \mathrm{mi} / \mathrm{h}$ is acceptable, but can speed be higher?
try $55 \mathrm{mi} / \mathrm{h}$
SSD $:=495$
(Table 3.1)
$M_{S}:=R_{V} \cdot\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{v}} \cdot \operatorname{deg}\right)\right) \quad M_{S}=31.15 \quad \mathrm{ft}$
this value is greater than 26.3 ft , therefore $50 \mathrm{mi} / \mathrm{h}$ is the design speed
Check values vs. Table 3.5 - Minimum radius for $e=0.08$ is 760 , R exceeds this value.

Problem 3.33

Determine the distance that must be cleared from the inside edge of the inside lane to provide adequate SSD.

V is $70 \mathrm{mi} / \mathrm{h}$
SSD := 730
$\mathrm{R}_{\mathrm{V}}:=2050$
$M_{S}:=R_{V} \cdot\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{V}} \cdot \operatorname{deg}\right)\right)$
$M_{S}=32.41$

To inside edge of inside lane (subtracting $1 / 2$ of lane width)

$$
M_{S}-5=27.41 \quad \mathrm{ft}
$$

Problem 3.34

Determine the design speed used to design the curve.

$e:=0.06$
(given)
since the road is four-lane with $12-\mathrm{ft}$ lanes, $\mathrm{M}_{\mathrm{S}}:=52-12-\frac{12}{2} \quad M_{\mathrm{S}}=34 \quad \mathrm{ft}$
try $60 \mathrm{mi} / \mathrm{h}$
$\mathrm{R}_{\mathrm{V}}:=1340$
(Table 3.5)
SSD := 570
(Table 3.1)
$M_{S}=R_{V} \cdot\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{v}} \cdot \operatorname{deg}\right)\right) \quad M_{S}=30.194 \quad f t$
this is less than the required distance, try again
try $70 \mathrm{mi} / \mathrm{h}$
$\mathrm{R}_{\mathrm{V}}:=2050$
SSD := 730
(Table 3.1)
$M_{S}:=R_{V}\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{v}} \cdot \operatorname{deg}\right)\right) \quad M_{S}=32.408 \quad \mathrm{ft}$
this is less than the required distance, try again
try $80 \mathrm{mi} / \mathrm{h}$
$R_{v}:=3060$
SSD := 910
(Table 3.1)
$M_{S}:=R_{v}\left(1-\cos \left(\frac{90 \cdot S S D}{\pi \cdot R_{v}} \cdot \operatorname{deg}\right)\right) \quad M_{S}=33.765 \quad f t$
this rounds to 34 ft , therefore the design speed is $80 \mathrm{mi} / \mathrm{h}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Determine the length of the horizontal curve.

$$
\mathrm{G}_{1}:=1 \quad \mathrm{G}_{2}:=3
$$

$\mathrm{L}_{\mathrm{S}}:=420 \quad \Delta:=37 \quad$ em: $:=0.06$
$A_{S}:=\left|G_{2}-G_{1}\right| \quad A_{S}=2$
$\mathrm{K}_{\mathrm{S}}:=\frac{\mathrm{L}_{\mathrm{S}}}{\mathrm{A}_{\mathrm{S}}} \quad \mathrm{K}_{\mathrm{S}}=210$
safe design speed is $75 \mathrm{mi} / \mathrm{h}(\mathrm{K}=206$ for $75 \mathrm{mi} / \mathrm{h})$

$$
\begin{align*}
& \mathrm{R}_{\mathrm{V} 1}:=2510 \quad \text { or } \tag{Table3.3}\\
& \mathrm{V}_{\mathrm{V}}:=75 \quad \mathrm{f}_{\mathrm{s}}:=0.09 \\
& \mathrm{R}_{\mathrm{V} 2}:=\frac{(\mathrm{V} \cdot 1.467)^{2}}{32.2 \cdot\left(\mathrm{f}_{\mathrm{s}}+\mathrm{e}\right)} \quad \mathrm{R}_{\mathrm{V} 2}=2506.31 \tag{Eq.3.34}
\end{align*}
$$

(Table 3.5)
since the road is two-lane with 12-ft lanes, $\quad \underset{\sim N}{R}:=R_{v 1}+\frac{12}{2} \quad R=2516$
$\mathrm{L}:=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta \quad \mathrm{L}=1624.76 \quad \mathrm{ft}$

Problem 3.36

Determine the station of the PT.
$\mathrm{G}_{1}:=-2.5 \quad \mathrm{G}_{2}:=1.5 \quad \underset{\mathrm{~A}}{\mathrm{~A}}:=\left|\mathrm{G}_{2}-\mathrm{G}_{1}\right| \quad \mathrm{A}=4 \quad \underset{\mathrm{~K}}{\mathrm{~K}}:=206 \quad$ (given)
$\Delta:=38$
e $:=0.08$
PVT := 2510
$L_{M}:=K \cdot A \quad L=824$
$P V C:=P V T-L \quad P V C=1686$
$P C:=P V C-292 \quad P C=1394$
$R_{V}:=2215$
(Table 3.5)
since the road is two-lane, 12-ft lanes
$\underset{\sim}{R}:=R_{V}+\frac{12}{2}$

$$
\mathrm{R}=2221 \quad \mathrm{ft}
$$

$\mathrm{L}:=\frac{\pi \cdot \mathrm{R} \cdot \Delta}{180} \quad \mathrm{~L}=1473.02 \mathrm{ft}$
PT :=PC $+\mathrm{L} \quad \mathrm{PT}=2867.02 \quad \mathrm{sta}_{\mathrm{PT}}=28+67.02$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Problem 3.37

Design the ramp and give the stationing and elevations of the PC, PT, PVCs, and PVTs.

$$
\begin{array}{ll}
\mathrm{G}_{1}:=-3 & \mathrm{G}_{2}:=5 \\
\mathrm{D}:=8.0 & \Delta:=90 \tag{given}
\end{array}
$$

using D, solve for R

$$
\begin{equation*}
\mathrm{R}:=\frac{18000}{\pi \cdot \mathrm{D}} \quad \mathrm{R}=716.197 \tag{Eq.3.35}
\end{equation*}
$$

From Table 3.5, maximum design speed for this radius is $50 \mathrm{mi} / \mathrm{h}$

$$
\begin{align*}
& \mathrm{T}:=\mathrm{R} \cdot \tan \left(\frac{\Delta}{2} \cdot \operatorname{deg}\right) \quad \mathrm{T}=716.197 \tag{Eq.3.36}\\
& \mathrm{~L}:=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta \tag{Eq.3.39}
\end{align*} \mathrm{~L}=1125
$$

calculate the elevations of the ramp connections using T and the grades

$$
\begin{array}{ll}
\text { elev }_{\text {EW }}:=150+T \cdot \frac{G_{2}}{100} & \text { elev }_{\text {EW }}=185.81 \\
\operatorname{elev}_{\text {NS }}:=125-T \cdot \frac{G_{1}}{100} & \text { elev }_{\text {NS }}=146.486 \\
K_{S}:=96 \tag{Table3.3}\\
G:=\frac{\text { elev }_{E W}-\operatorname{elev}_{\text {NS }}}{L} \cdot 100 & G=3.495
\end{array}
$$

calculate the lengths of the two sag curves using Equation 3.10
$A_{1}:=\left|G_{1}-G\right| \quad A_{1}=6.495 \quad A_{2}:=\left|G-G_{2}\right| \quad A_{2}=1.505$
$\mathrm{L}_{1}:=\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A}_{1} \quad \mathrm{~L}_{1}=623.564 \quad \mathrm{~L}_{2}:=\mathrm{K}_{\mathrm{s}} \cdot \mathrm{A}_{2} \quad \mathrm{~L}_{2}=144.436$
calculate the length of the connecting grade
$L_{\text {con }}:=L-\frac{\left(L_{1}+L_{2}\right)}{2} \quad L_{\text {con }}=741 \mathrm{ft}$
finally, calculate the station and elevation of all $\mathrm{PVCs}, \mathrm{PV} \mathrm{Ts}, \mathrm{PCs}$, and PTs

$P C:=1500 \quad 15+00$		(given)
PT : $=\mathrm{PC}+\mathrm{L}$	$\mathrm{PT}=2625$	$26+25$
$\mathrm{PVC}_{s}:=\mathrm{PC}-\frac{\mathrm{L}_{1}}{2}$	$\mathrm{PVC}_{S}=1188.218$	$11+88.2$
$P V T_{s}:=P C+\frac{L_{1}}{2}$	$\mathrm{PV}_{\mathrm{S}}=1811.782$	$18+11.8$
$P \vee C_{s 2}:=P \vee T_{s}+L_{\text {con }}$	$\mathrm{PVC}_{\mathrm{s} 2}=2552.782$	$25+52.8$
$P V T_{\mathrm{s} 2}:=\mathrm{PT}+\frac{\mathrm{L}_{2}}{2}$	$\mathrm{PVT}_{\mathrm{s} 2}=2697.218$	$26+97.2$
elevPC: $=$ elev ${ }_{\text {NS }}$	elevPC $=146.486$	
elevPT $=$ elevew	elever $^{\text {a }}=185.81$	
$\text { elev }_{P V C s}:=\text { elev}_{P C}-\frac{L_{1}}{2} \cdot \frac{G_{1}}{100}$	elevPVCs $=155.839$	
$\text { elev }_{P V T_{s}}:=\operatorname{elev}_{P C}+\frac{L_{1}}{2} \cdot \frac{G}{100}$	elevPVTs $=157.384$	
elevPVCs2 $=$ elevPVTs $+L_{\text {con }} \cdot \frac{G}{100}$	${ }^{\text {elev. }}$ PVCs2 $2=183.286$	
$\operatorname{elev}_{\mathrm{PV}}^{\mathrm{s} 2} 2:=\text { elev}_{\mathrm{PT}}+\frac{\mathrm{L}_{2}}{2} \cdot \frac{\mathrm{G}_{2}}{100}$	${ }^{\text {elevpry }}$ / $2=189.421$	

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

Multiple Choice Problems

Determine the elevation of the lowest point of the curve.
Problem 3.38
$\mathrm{G}_{1}:=-4.0 \quad \mathrm{G}_{2}:=2.5 \quad \mathrm{~L}:=4$ stations (given)
c: $=500 \mathrm{ft}$
stationing and elevation for lowest point on the curve

$$
\begin{align*}
& \frac{\mathrm{dy}}{\mathrm{dx}}:=(2 \mathrm{a} \cdot \mathrm{x}+\mathrm{b})=0 \tag{Eq.3.1}\\
& \mathrm{~b}:=-4.0 \tag{Eq.3.3}
\end{align*}
$$

$\mathrm{a}:=\frac{\mathrm{G}_{2}-\mathrm{G}_{1}}{2 \cdot \mathrm{~L}} \quad \mathrm{a}=0.813$
$\mathrm{x}:=\frac{-\mathrm{b}}{2 \cdot \mathrm{a}} \quad \mathrm{x}=2.462$ stations

Lowest Point stationing: $\quad(100+00)+(2+46)=102+46$

Lowest Point elevation: $\quad \mathrm{y}:=\mathrm{a} \cdot\left(\mathrm{x}^{2}\right)+\mathrm{b} \cdot \mathrm{x}+\mathrm{c} \quad \mathrm{y}=495.077 \mathrm{ft}$

Alternative Answers:

1) Miscalculation

$$
\text { y }:=492.043 \mathrm{ft}
$$

2) Miscalculate "a"

$$
\begin{aligned}
& \mathrm{a}:=\frac{\mathrm{G}_{1}-G_{2}}{2 \cdot L} \quad \mathrm{a}=-0.813 \quad \text { Station }=102+46 \\
& \text { 品: }:=\mathrm{a} \cdot\left(\mathrm{x}^{2}\right)+\mathrm{b} \cdot \mathrm{x}+\mathrm{c} \quad \mathrm{y}=485.231 \mathrm{ft}
\end{aligned}
$$

3) Assume lowest point at $\mathrm{L} / 2$

$$
\text { Station = } 102+00
$$

$$
x:=2 \quad \text { w }:=a \cdot\left(x^{2}\right)+b \cdot x+c \quad y=495.25 \quad f t
$$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
$\mathrm{T}:=1200 \quad \mathrm{ft} \quad \Delta:=\frac{0.5211 .180}{\pi}$
(given)

Calculate radius
$\underset{\mathrm{N}}{\mathrm{R}}:=\frac{\mathrm{T}}{\tan _{[\mathrm{mc}[}\left[\left(\frac{\Delta}{2}\right) \cdot \mathrm{deg}\right]} \quad \mathrm{R}=4500.95 \mathrm{ft}$

Solve for length of curve

$$
\begin{equation*}
\mathrm{L}:=\frac{\pi}{180} \cdot \mathrm{R} \cdot \Delta \quad \mathrm{~L}=2345.44 \mathrm{ft} \tag{Eq3.39}
\end{equation*}
$$

$\underline{\text { Calculate stationing of PT }}$
stationing $P C=145+00$ minus $12+00=133+00$
stationing PT = stationing PC +L

$$
=133+00 \text { plus } 23+45.43=156+45.43
$$

Alternative Answers:

1) Add length of curve to stationing PI
stationing PT $=145+000$ plus $23+45.43=168+45.43$
2) Use radians instead of degrees
$\mathrm{R}:=\frac{\mathrm{T}}{\tan \left(\frac{0.5211}{2}\right)}$
$\mathrm{R}=4500.95 \mathrm{ft}$
$\mathrm{L}:=\frac{\pi}{180} \cdot \mathrm{R} \cdot 0.5211$

$$
\mathrm{L}=40.94 \mathrm{ft}
$$

stationing PT $=133+00$ plus $40+94=173+94$
3) add half of length to stationing PI
stationong PT $=145+00$ plus $11+72.72=156+72.72$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.
$\mathrm{G}_{1}:=5.5 \% \quad \mathrm{G}_{2}:=2.5 \% \quad \mathrm{x}:=750 \mathrm{ft} \quad \mathrm{L}:=1600 \mathrm{ft} \quad$ (given)
determine the absolute value of the difference of grades

$$
\mathrm{A}:=\left|\mathrm{G}_{1}-\mathrm{G}_{2}\right| \quad \mathrm{A}=3
$$

determine offset at 750 feet from the PVC

$$
\begin{equation*}
\mathrm{Y}:=\frac{\mathrm{A}}{200 \cdot \mathrm{~L}} \cdot \mathrm{x}^{2} \quad \mathrm{Y}=5.273 \mathrm{ft} \tag{Eq3.7}
\end{equation*}
$$

Alternative Answers:

1) Use Y_{m} equation.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{m}}:=\frac{\mathrm{A} \cdot \mathrm{~L}}{800} \quad \mathrm{Y}_{\mathrm{m}}=6 \quad \mathrm{ft} \tag{Eq3.8}
\end{equation*}
$$

2) Use Y_{f} equation.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{f}}:=\frac{\mathrm{A} \cdot \mathrm{~L}}{200} \quad \mathrm{Y}_{\mathrm{f}}=24 \mathrm{ft} \tag{Eq3.9}
\end{equation*}
$$

3) Use 0.055 and 0.025 for grades.

$$
\begin{array}{ll}
\mathrm{G}_{1}:=0.055 & \mathrm{G}_{2}:=0.025 \\
\mathrm{~A}:=\left|\mathrm{G}_{1}-\mathrm{G}_{2}\right| & \mathrm{A}=0.03 \\
\mathrm{Y}:=\frac{\mathrm{A}}{200 \mathrm{~L}} \cdot \mathrm{x}^{2} & \mathrm{Y}=0.053 \mathrm{ft}
\end{array}
$$

$\mathrm{VN}_{:}=65 \cdot\left(\frac{5280}{3600}\right) \quad \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{G}_{1}:=1.5 \quad \mathrm{G}_{2}:=-2.0 \quad$ (given)
ignoring the effect of grades
using Table 3.1, SSD for $65 \mathrm{mi} / \mathrm{h}$ would be 645 ft (assuming $L>S S D$)

$$
\begin{equation*}
\mathrm{SSD}:=645 \mathrm{ft} \tag{Table3.1}
\end{equation*}
$$

$$
\mathrm{A}:=\left|\mathrm{G}_{1}-\mathrm{G}_{2}\right| \quad \mathrm{A}=3.50
$$

$$
\begin{equation*}
\mathrm{L}_{\mathrm{m}}:=\frac{\mathrm{A} \cdot \mathrm{SSD}^{2}}{2158} \quad \mathrm{~L}_{\mathrm{m}}=674.74 \mathrm{ft} \tag{Eq.3.15}
\end{equation*}
$$

$674.74>645$

Alternative Answers

1) assume L < SSD
$\mathrm{L}_{\mathrm{m}} \mathrm{i}=2 \cdot \mathrm{SSD}-\frac{2158}{\mathrm{~A}} \quad \mathrm{~L}_{\mathrm{m}}=673.43 \mathrm{ft}$
2) Misinterpret chart for $70 \mathrm{mi} / \mathrm{h}$

SSD $:=730 \quad \mathrm{~L}_{\mathrm{L}}:=\frac{\mathrm{A} \cdot \mathrm{SSD}^{2}}{2158} \quad \mathrm{~L}_{\mathrm{m}}=864.30 \mathrm{ft}$
3) Assume SSD is equivalent to L_{m}
$\underset{\sim}{S S D}:=645 \quad \mathrm{~L}_{10}:=\mathrm{SSD} \quad$ therefore $\quad \mathrm{L}_{\mathrm{m}}=645.00 \mathrm{ft}$
$\mathrm{V}_{1}:=35 \cdot \frac{5280}{3600}$
$\frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{G}:=\frac{3}{100}$
(given)
$\mathrm{a}:=11.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}} \quad \mathrm{~g}:=32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
$\mathrm{t}_{\mathrm{r}}:=2.5 \mathrm{~s}$
(assumed)

Determine stopping sight distance

SSD : $=\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{a}}{\mathrm{g}}-\mathrm{G}\right)}+\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}} \quad \quad \mathrm{SSD}=257.08 \mathrm{ft}$

Alternative Answers:

1) Assume grade is positive (uphill)

SSD: $=\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{a}}{\mathrm{g}}+\mathrm{G}\right)}+\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}} \quad \quad \mathrm{SSD}=236.63 \mathrm{ft}$
2) Use $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ instead of $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}$

鲶: $=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
SSD: $=\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{a}}{\mathrm{g}}-\mathrm{G}\right)}+\mathrm{V}_{1} \cdot \mathrm{t}_{\mathrm{r}} \quad \quad \mathrm{SSD}=249.15 \mathrm{ft}$
3) Miscalculation
SSD:=254.23 ft

$$
\begin{aligned}
& \mathrm{G}_{1}:=4.0 \quad \mathrm{G}_{2}:=-2.0 \quad \mathrm{H}_{1}:=6.0 \mathrm{ft} \quad \mathrm{H}_{2}:=4.0 \mathrm{ft} \\
& \mathrm{~S}:=450 \mathrm{ft} \\
& \mathrm{MN}:=40 \cdot \frac{5280}{3600} \quad \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

(given)

Calculate the minim length of vertical curve

$$
\begin{align*}
& A:=\left|G_{1}-G_{2}\right| \\
& L_{\mathrm{m}}:=2 \cdot \mathrm{~S}-\frac{200\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)^{2}}{A} \quad \mathrm{~L}_{\mathrm{m}}=240.07 \mathrm{ft} \tag{Eq3.14}
\end{align*}
$$

Alternative Answers:

1) Use equation 3.13

$$
\begin{equation*}
\mathrm{L}_{\operatorname{maj}}=\frac{\mathrm{A} \cdot \mathrm{~s}^{2}}{200\left(\sqrt{\mathrm{H}_{1}}+\sqrt{\mathrm{H}_{2}}\right)^{2}} \quad \mathrm{~L}_{\mathrm{m}}=306.85 \mathrm{ft} \tag{Eq3.13}
\end{equation*}
$$

2) Use AASHTO guidelines for heights and equation 3.13

Hat $:=3.5 \mathrm{ft} \quad \mathrm{H}_{2 \mathrm{a}}:=2.0 \mathrm{ft}$
$\mathrm{L}:=\frac{\mathrm{A} \cdot \mathrm{S}^{2}}{200 \cdot\left(\sqrt{\mathrm{H}_{1}}+\sqrt{\mathrm{H}_{2}}\right)^{2}}$

$$
\mathrm{L}_{\mathrm{m}}=562.94 \mathrm{ft}
$$

3) Solve for S and not L_{m}
$\mathrm{L}_{\mathrm{min}}=450 \mathrm{ft}$
$\mathrm{S}:=\frac{\mathrm{L}_{\mathrm{m}}+200 \cdot\left(\sqrt{\mathrm{H}_{1}}+\sqrt{\mathrm{H}_{2}}\right)^{2}}{2}$
$\mathrm{S}=1304.15 \mathrm{ft}$

Solutions Manual to accompany Principles of Highway Engineering and Traffic Analysis, 4e, by Fred L. Mannering, Scott S. Washburn, and Walter P. Kilareski. Copyright © 2008, by John Wiley \& Sons, Inc. All rights reserved.

