Chapter 2

Congruence in \mathbb{Z} and Modular Arithmetic

2.1 Congruence and Congruence Classes

- 1. (a) $2^{5-1} = 2^4 = 16 \equiv 1 \pmod{5}$. (b) $4^{7-1} = 4^6 = 4096 \equiv 1 \pmod{7}$. (c) $3^{11-1} = 3^{10} = 59049 \equiv 1 \pmod{11}$.
- 2. (a) Use Theorems 2.1 and 2.2: $6k + 5 \equiv 6.1 + 5 \equiv 11 \equiv 3 \pmod{4}$. (b) $2r + 3s \equiv 2.3 + 3.(-7) \equiv -15 \equiv 5 \pmod{10}$.
- 3. (a) Computing the checksum gives

$$10 \cdot 3 + 9 \cdot 5 + 8 \cdot 4 + 7 \cdot 0 + 6 \cdot 9 + 5 \cdot 0 + 4 \cdot 5 + 3 \cdot 1 + 2 \cdot 8 + 1 \cdot 9$$

= 30 + 45 + 32 + 54 + 20 + 3 + 16 + 9 = 209.

Since $209 = 11 \cdot 19$, we see that $209 \equiv 0 \pmod{11}$, so that this could be a valid ISBN number.

(b) Computing the checksum gives

$$10 \cdot 0 + 9 \cdot 0 + 8 \cdot 3 + 7 \cdot 1 + 6 \cdot 1 + 5 \cdot 0 + 4 \cdot 5 + 3 \cdot 5 + 2 \cdot 9 + 1 \cdot 5$$

= 24 + 7 + 6 + 20 + 15 + 18 + 5 = 95.

Since $95 = 11 \cdot 8 + 7$, we see that $95 \equiv 7 \pmod{11}$, so that this could not be a valid ISBN number.

(c) Computing the checksum gives

$$10 \cdot 0 + 9 \cdot 3 + 8 \cdot 8 + 7 \cdot 5 + 6 \cdot 4 + 5 \cdot 9 + 4 \cdot 5 + 3 \cdot 9 + 2 \cdot 6 + 1 \cdot 10$$

= 27 + 64 + 35 + 24 + 45 + 20 + 27 + 12 + 10 = 264.

Since $264 = 11 \cdot 24$, we see that $264 \equiv 0 \pmod{11}$, so that this could be a valid ISBN number.

- 4. (a) Computing the checksum gives
 - $3 \cdot 0 + 3 + 3 \cdot 7 + 0 + 3 \cdot 0 + 0 + 3 \cdot 3 + 5 + 3 \cdot 6 + 6 + 3 \cdot 9 + 1 = 90.$

Since $90 = 10 \cdot 9$, we have $90 \equiv 0 \pmod{10}$, so that this was scanned correctly.

(b) Computing the checksum gives

$$3 \cdot 8 + 3 + 3 \cdot 3 + 7 + 3 \cdot 3 + 2 + 3 \cdot 0 + 0 + 3 \cdot 0 + 6 + 3 \cdot 2 + 5 = 71.$$

Since $71 = 10 \cdot 7 + 1$, we have $71 \equiv 1 \pmod{10}$, so that this was not scanned correctly.

(c) Computing the checksum gives

 $3 \cdot 0 + 4 + 3 \cdot 0 + 2 + 3 \cdot 9 + 3 + 3 \cdot 6 + 7 + 3 \cdot 3 + 0 + 3 \cdot 3 + 4 = 83.$

Since $83 = 10 \cdot 8 + 3$, we have $83 \equiv 3 \pmod{10}$, so that this was not scanned correctly.

- 5. Since $5 \equiv 1 \pmod{4}$, it follows from Theorem 2.2 that $5^2 \equiv 1^2 \pmod{4}$, so that (applying Theorem 2.2 again) $5^3 \equiv 1^3 \pmod{4}$. Continuing, we get $5^{1000} \equiv 1^{1000} \equiv 1 \pmod{4}$. Since $5^{1000} \equiv 1 \pmod{4}$. Since $5^{1000} \equiv 1 \pmod{4}$.
- 6. Given $n \mid (a b)$ so that a b = nq for some integer q. Since $k \mid n$ it follows that $k \mid (a b)$ and therefore $a \equiv b \pmod{k}$.
- 7. By Corollary 2.5, $a \equiv 0, 1, 2$ or 3 (mod 4). Theorem 2.2 implies $a^2 \equiv 0, 1 \pmod{4}$. Therefore a^2 cannot be congruent to either 2 or 3 (mod 4).
- 8. By the division algorithm, any integer *n* is expressible as n = 4q + r where $r \in \{0, 1, 2, 3\}$, and $n \equiv r \pmod{4}$. If *r* is 0 or 2 then *n* is even. Therefore if *n* is odd then $n \equiv 1$ or 3 (mod 4).
- 9. (a) $(n-a)^2 \equiv n^2 2na + a^2 \equiv a^2 \pmod{n}$ since $n \equiv 0 \pmod{n}$. (b) $(2n-a)^2 \equiv 4n^2 - 4na + a^2 \equiv a^2 \pmod{4n}$ since $4n \equiv 0 \pmod{4n}$.
- 10. Suppose the base ten digits of *a* are $(c_n c_{n-1} \dots c_1 c_0)$. (Compare Exercise 1.2.32). Then $a = c_n 10^n + c_{n-1} 10^{n-1} + \dots + c_1 10 + c_0 \equiv c_0 \pmod{10}$, since $10^k \equiv 0 \pmod{10}$ for every $k \ge 1$.
- 11. Since there are infinitely many primes (Exercise 1.3.25) there exists a prime p > |a b|. By hypothesis, p | (a b) so the only possibility is a b = 0 and a = b.
- 12. If $p \equiv 0, 2 \text{ or } 4 \pmod{6}$, then p is divisible by 2. If $p \equiv 0 \text{ or } 3 \pmod{6}$ then p is divisible by 3. Since p is a prime > 3 these cases cannot occur, so that $p \equiv 1 \text{ or } 5 \pmod{6}$. By Theorem 2.3 this says that $[p] = [1] \text{ or } [5] \text{ in } \mathbb{Z}_6$.
- 13. Suppose *r*, *r*' are the remainders for *a* and *b*, respectively. Theorem 2.3 and Corollary 2.5 imply: $a \equiv b \pmod{n}$ if and only if [a] = [b] if and only if [r] = [r']. Then r = r' as in the proof of Corollary 2.5(2).

- 14. (a) Here is one example: a = b = 2 and n = 4.
 - (b) The assertion is: if $n \mid ab$ then either $n \mid a$ or $n \mid b$. This is true when n is prime by Theorem 1.8.
- 15. Since (a, n) = 1 there exist integers u, v such that au + nv = 1, by Theorem 1.3. Therefore $au \equiv au + nv \equiv 1 \pmod{n}$, and we can choose b = u.
- 16. Given that $a \equiv 1 \pmod{n}$, we have a = nq + 1 for some integer q. Then (a, n) must divide a nq = 1, so (a, n) = 1. One example to see that the converse is false is to use a = 2 and n = 3. Then (a, n) = 1 but $[a] \neq [1]$.
- 17. Since $10 \equiv -1 \pmod{11}$, Theorem 2.2 (repeated) shows that $10^n \equiv (-1)^n \pmod{11}$.
- 18. By Exercise 23 we have $125698 \equiv 31 \equiv 4 \pmod{9}$, $23797 \equiv 28 \equiv 1 \pmod{9}$ and $2891235306 \equiv 39 \equiv 12 \equiv 3 \pmod{9}$. Since $4 \cdot 1 \neq 3 \pmod{9}$ the conclusion follows.
- 19. Proof: If [a] = [b] then $a \equiv b \pmod{n}$ so that a = b + nk for some integer k. Then (a, n) = (b, n) using Lemma 1.7.
- 20. (a) One counterexample occurs when a = 0, b = 2 and n = 4.
 - (b) Given $a^2 \equiv b^2 \pmod{n}$, we have $n \mid (a^2 b^2) = (a + b)(a b)$. Since *n* is prime, use Theorem 1.8 to conclude that either $n \mid (a + b)$ or $n \mid (a b)$. Therefore, either $a \equiv b \pmod{n}$ or $a \equiv -b \pmod{n}$.
- 21. (a) Since $10 \equiv 1 \pmod{9}$, Theorem 2.2 (repeated) shows that $10^n \equiv 1 \pmod{9}$.
 - (b) (Compare Exercise 1.2.32). Express integer a in base ten notation: $a = c_n 10^n + \ldots + c_1 10 + c_0$. Then $a \equiv c_n + c_{n-1} + \ldots + c_1 \pmod{9}$, since $10^k \equiv 1 \pmod{9}$.
- 22. (a) Here is one example: a = 2, b = 0, c = 2, n = 4.
 - (b) We have $n \mid ab ac = a(b c)$. Since (a, n) = 1 Theorem 1.5 implies that $n \mid (b c)$ and therefore $b \equiv c \pmod{n}$.

2.2 Modular Arithmetic

1. (a) Answered in the text.

(b)	+	0	1	2	3	_	0	1	2	3
()	0	0	1	2	3	0	0	0	0	0
	1	1	2	3	0	1	0	1	2	3
	2	2	3	0	1	2	0	2	0	2
	3	3	0	1	2	3	0	3	2	1

(c) Answered in the text.

(d) +	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	4	5	6	7	8	9	10	11	0
2	2	3	4	5	6	7	8	9	10	11	0	1
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	6	7	8	9	10	11	0	1	2	3
5	5	6	7	8	9	10	11	0	1	2	3	4
6	6	7	8	9	10	11	0	1	2	3	4	5
7	7	8	9	10	11	0	1	2	3	4	5	6
8	8	9	10	11	0	1	2	3	4	5	6	7
9	9	10	11	0	1	2	3	4	5	6	7	8
10	10	11	0	1	2	3	4	5	6	7	8	9
11	11	0	1	2	3	4	5	6	7	8	9	10
	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

However, the notation must be changed to correspond to the new notation. See the tables in Example 2 to see what it must look like.

2. To solve $x^2 \oplus x = [0]$ in \mathbb{Z}_4 , substitute each of [0], [1], [2], and [3] in the equation to see if it is a solution:

x	$x^2\oplus x$	Is $x^2 \oplus x = [0]?$
[0]	$[0] \otimes [0] \oplus [0] = [0] + [0] = [0]$	Yes; solution.
[1]	$[1] \otimes [1] \oplus [1] = [1] + [1] = [2]$	No.
[2]	$[2] \otimes [2] \oplus [2] = [0] + [2] = [2]$	No.
[3]	$[3] \otimes [3] \oplus [3] = [1] \oplus [3] = [0]$	Yes; solution.

3. x = 1, 3, 5 or 7 in \mathbb{Z}_0 . However, the notation should be changed to use, for example, [3] instead of 3.

- 4. x = 1, 2, 3 or 4 in \mathbb{Z}_5 . However, the notation should be changed to use, for example, [3] instead of 3.
- 5. x = 1, 2, 4, 5 in \mathbb{Z}_6 . However, the notation should be changed to use, for example, [3] instead of 3.
- 6. To solve $x^2 \oplus [8] \otimes x = [0]$ in \mathbb{Z}_9 , substitute each of $[0], [1], [2], \dots, [8]$ in the equation to see if it is a solution:

x	$x^2 \oplus [8] \otimes x$	Is $x^2 \oplus [8] \otimes x = [0]$?
[0]	$[0] \otimes [0] \oplus [8] \otimes [0] = [0] + [0] = [0]$	Yes; solution.
[1]	$[1] \otimes [1] \oplus [8] \otimes [1] = [1] + [8] = [0]$	Yes; solution.
[2]	$[2] \otimes [2] \oplus [8] \otimes [2] = [4] + [7] = [2]$	No.
[3]	$[3]\otimes[3]\oplus[8]\otimes[3]=[0]\oplus[6]=[6]$	No.
[4]	$[4] \otimes [4] \oplus [8] \otimes [4] = [7] \oplus [5] = [3]$	No.
[5]	$[5] \otimes [5] \oplus [8] \otimes [5] = [7] \oplus [4] = [2]$	No.
[6]	$[6] \otimes [6] \oplus [8] \otimes [6] = [0] \oplus [3] = [3]$	No.
[7]	$[7] \otimes [7] \oplus [8] \otimes [7] = [4] \oplus [2] = [6]$	No.
[8]	$[8] \otimes [8] \oplus [8] \otimes [8] = [1] \oplus [1] = [2]$	No.

The solutions are x = [0] and x = [1].

7. To solve $x^3 \oplus x^2 \oplus x \oplus [1] = [0]$ in \mathbb{Z}_8 , substitute each of $[0], [1], [2], \dots, [7]$ in the equation to see if it is a solution:

x	$x^3 \oplus x^2 \oplus x \oplus [1]$	Is $x^3 \oplus x^2 \oplus x \oplus [1] = [0]?$
[0]	[1]	No.
[1]	[4]	No.
[2]	[7]	No.
[3]	[0]	No.
[4]	[5]	No.
[5]	[4]	No.
[6]	[3]	No.
[7]	[0]	Yes; solution.

The only solution is x = [7].

8. To solve $x^3 + x^2 = [2]$ in \mathbb{Z}_{10} , substitute each of $[0], [1], \ldots, [9]$ in the equation to see if it is a

solution:

x	$x^3 \oplus x^2$	Is $x^3 \oplus x^2 = [2]?$
[0]	[0]	No.
[1]	[2]	Yes; solution.
[2]	[2]	Yes; solution
[3]	[6]	No.
[4]	[0]	No.
[5]	[0]	No.
[6]	[2]	Yes; solution.
[7]	[2]	Yes; solution.
[8]	[6]	No.
[9]	[0]	No.

The solutions are x = [1], [2], [6], and [7].

- 9. (a) a = 3 or 5. (b) a = 2 or 3. (c) No such element exists in \mathbb{Z}_6 . However, the notation should be changed to use, for example, [3] instead of 3.
- 10. <u>Part 3</u>: $[a] \oplus [b] = [a + b] = [b + a] = [b] \oplus [a]$ since a + b = b + a in \mathbb{Z} .

<u>Part 7</u>: $[a] \odot ([b] \odot [c]) = [a] \odot [be] = [a(bc)] = [(ab)c] = [ab] \odot [c] = ([a] \odot [b]) \odot [c].$

<u>Part 8</u>: $[a] \odot ([b] \oplus [c]) = [a] \odot [b + c] = [a(b + c)] = [ab + ac] = [ab] \oplus [ac] = ([a] \odot [b]) \oplus ([a \odot [c]).$

<u>Part 9</u>: $[a] \odot [b] = [ab] = [ba] = [b] \odot [a]$.

- 11. Every value of *x* satisfies these equations.
- 12. See Exercise 2.1.14.
- 13. See Exercise 2.1.22.
- 14. (a) x = 0 or 4 in \mathbb{Z}_5 (b) x = 0, 2, 3 or 5 in \mathbb{Z}_6 .

However, the notation should be changed to use, for example, [3] instead of 3.

- 15. (a) $(a + b)^5 = a^5 + b^5$ in \mathbb{Z}_5 . (b) $(a + b)^3 = a^3 + b^3$ in \mathbb{Z}_3 .
 - (c) $(a + b)^2 = a^2 + b^2$ in \mathbb{Z}_2 .
 - (d) One is led to conjecture that $(a + b)^7 = a^7 + b^7$ in \mathbb{Z}_7 .

To investigate the general result for any prime exponent, use the Binomial Theorem and Exercise 1.4.13.

However, the notation should be changed to use, for example, [a] instead of a.

16. (a) $a = 1, 2, 3 \text{ or } 4 \text{ in } \mathbb{Z}_5$. (b) $a = 1 \text{ or } 3 \text{ in } \mathbb{Z}_4$. (c) $a = 1 \text{ or } 2 \text{ in } \mathbb{Z}_3$ (d) $a = 1 \text{ or } 5 \text{ in } \mathbb{Z}_6$.

However, the notation should be changed to use, for example, [3] instead of 3.

2.3 The Structure of \mathbb{Z}_p (*p* Prime) and \mathbb{Z}_n

1.	(a) 1, 2, 3, 4, 5, 6	(b)	1,	3,	5,	7
	(c) 1, 2, 4, 5, 7, 8	(d)	1,	3,	7,	9

- 2. (a) Since 7 is prime, part (3) of Theorem 2.8 says that there are no zero divisors in \mathbb{Z}_7 .
 - (b) The zero divisors are 2, 4, and 6, since $2 \cdot 4 = 0$ and $6 \cdot 4 = 0$. Further computations will show that the other elements of \mathbb{Z}_8 are not zero divisors.
 - (c) The zero divisors are 3 and 6, since $3 \cdot 6 = 0$. Further computations will show that the other elements of \mathbb{Z}_9 are not zero divisors.
 - (d) The zero divisors are 2, 4, 5, 6, and 8, since $2 \cdot 5 = 4 \cdot 5 = 6 \cdot 5 = 8 \cdot 5 = 0$. Further computations will show that the other elements of \mathbb{Z}_{10} are not zero divisors.
- 3. In \mathbb{Z}_n , it appears that every nonzero element is either a unit or a zero divisor.
- 4. (a) 1 solution in \mathbb{Z}_7 (b) 2 solutions in \mathbb{Z}_8
 - (c) 0 solutions in \mathbb{Z}_9 (d) 2 solutions in $\mathbb{Z}_{|0|}$.
- 5. We first show that $ab \neq 0$. If ab = 0, then since a is a unit, then $a^{-1}ab = 0$, so that b = 0. But b is a zero divisor, so that $b \neq 0$ and thus $ab \neq 0$. Now, since b is a zero divisor, choose $c \neq 0$ such that bc = 0; then (ab)c = a(bc) = 0 shows that ab is also a zero divisor.
- 6. Since n is composite, write n = ab where 1 < a, b < n. Then in \mathbb{Z}_n , $[a] \neq 0$ and $[b] \neq 0$, since both a and b are less than n, but [a][b] = [ab] = [n] = 0, so that a and b are zero divisors.
- 7. If ab = 0 in \mathbb{Z}_p then $ab \equiv 0 \pmod{p}$ so that $p \mid ab$. By Theorem 1.8 we conclude that $p \mid a$ or $p \mid b$. Then $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$. Equivalently, a = 0 or b = 0 in \mathbb{Z}_p .
- 8. (a) For instance choose *a* even and *b* odd. (b) Yes.
- 9. (a) Suppose a is a unit. Choose b such that ab = 0. Then since a is a unit, we have $a^{-1}ab = a^{-1}0 = 0$, so that b = 0. Thus a is not a zero divisor, since any such b must be zero.
 - (b) This statement is the contrapositive of part (a), so is also true.

- 10. No element can be both a unit and a zero divisor, by Exercise 9. Choose $x \neq 0 \in \mathbb{Z}_n$, and consider the set of products $\{x \cdot 1, x \cdot 2, \dots, x \cdot (n-1)\}$. This set has n-1 elements. If x is not a zero divisor, then 0 is not one of those elements. So there are two possibilities: either no element is duplicated in that list, or there is a duplicate. If there is no duplicate, then since there are n-1 elements and n-1 possible values, one of the elements must be 1; that is, for some $a \in \mathbb{Z}_n$, we have $x \cdot a = 1$. Thus x is a unit. If there is a duplicate, say $x \cdot a = x \cdot b$, then $x \cdot (a-b) = 0$, so that x is a zero divisor, which contradicts our original assumption. This shows that if x is not a zero divisor, then it is a unit.
- 11. Since a is a unit, the equation ax = b has the solution $a^{-1}b$, since $aa^{-1}b = b$. Now, suppose that ax = b and also ay = b. Then a(x y) = 0. Since a is not a zero divisor, and $a \neq 0$ since it is a unit, it follows that x y = 0 so that x = y. Hence the solution is unique.
- 12. If x = [r] is a solution then [ar] = [b] so that $ar \equiv b \pmod{n}$ and ar b = kn for some integer k. Then $d \mid a$ and $d \mid n$ implies $d \mid (ar - kn) = b$.
- 13. Since *d* divides each of a, *b* and *n* there are integers a_1 , n_1 , b_1 . with $a = da_1$, $b = db_1$. and $n = dn_1$. By Theorem 1.3 there are integers *u*, *v* with au + nv = d so that $au \equiv d \pmod{n}$. Therefore $a(ub_1) \equiv b_1d = b \pmod{n}$ so that $x = [ub_1]$ is one solution. Since $an_1 = a_1dn_1 = a_1n \equiv 0 \pmod{n}$ we see that $x = [ub_1 + n_1t]$ is a solution for every integer *t*.
- 14. (a) If $[ub_1 + sn_1]$ and $[ub_1 + tn_1]$ are equal in \mathbb{Z}_n for some $0 \le s < t < d$, then $n \mid (tn_1 sn_1) = (t s)n_1$ so that $d \mid (t s)$ contrary to 0 < (t s) < d.
 - (b) If x = [r] is a solution then $[ar] = [b] = [a \cdot ub_1]$ so that $n \mid a(r ub_1)$ so that $a(r ub_1) = nw$ for some integer w. Cancel d to obtain $a_1(r ub_1) = n_1w$. Since $(a_1, n_1) = 1$, (Why?) Theorem 1.5 implies $n_1 \mid (r ub_1)$ so that $r = ub_1 + tn_1$ for some t. Then $x = [r] = [ub_1 + tn_1]$. Divide t by d to get t = dq + k where $0 \le k < d$. Then $x = [ub_1 + (dq + k)n_1] = [ub_1 + kn_1]$ because $[dn_1] = [n] = [0]$.
- 15. (a) 15x = 9 in Z₁₈ if and only if 15x ≡ 9 (mod 18) if and only if 5x ≡ 3 (mod 6) if and only if x ≡ 3 (mod 6) if and only if x ≡ 3, 9, 15 (mod 18) if and only if x = [3], [9], [15] in Z₁₈.
 (b) x = 3, 16, 29, 42 or 55 in Z₆₅.
- 16. By Exercise 10, every nonzero element of \mathbb{Z}_n is a unit or a zero divisor, but not both. So the statement we are trying to prove is equivalent to the following statement: If $a \neq 0$ and b are elements of \mathbb{Z}_n and ax = b has no solutions in \mathbb{Z}_n , prove that a is not a unit. The contrapositive of this statement, which is equivalent to the statement itself, is: If $a \neq 0$ and b are elements of \mathbb{Z}_n and ax = b has at least one solution in \mathbb{Z}_n . But Exercise 11 proves this statement.
- 17. Suppose that a and b are units. Then $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$, so that ab is a unit.
- 18. See the Hint when 0 < 1. Otherwise, if $0 \leq 1$, then since 0 = 1, we must have 1 < 0 since we have fully ordered \mathbb{Z}_n . Adding 1 to both sides repeatedly, using rule (ii), gives $n-1 < n-2 < \cdots < 1 < 0$, so that, by rule (i), n-1 < 0. Now add 1 to both sides to get 0 < 1, which is a contradiction.