Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes

1.

(@)25t = 2* = 16 = 1 (mod 5). (b) 47! = 4° = 4096 = 1 (mod 7).
(c) 3" = 3= 59049 = 1 (mod 11).

(a)Use Theorems 2.1 and 2.2: 6k + 5=6.1 + 5= 11 = 3 (mod 4).
(b)2r + 3s=2.3 + 3.(-7) =-15 =5 (mod 10).
(a) Computing the checksum gives
10-34+9-5+8-44+7-0+6-94+5-0+4-54+3-1+2-841-9
=304+45+324+54+20+ 3+ 16 + 9 = 209.
Since 209 = 1119, we see that 209 = 0 (mod 11), so that this could be a valid ISBN number.
(b) Computing the checksum gives
10-0+9-0+8-3+7-14+6-14+5-0+4-5+3-5+2-9+1-5
=244+74+6+20+15+ 1845 =95.

Since 95 = 11 -8 + 7, we see that 95 = 7 (mod 11), so that this could not be a valid ISBN
number.

(¢) Computing the checksum gives

10-0+9-3+8-84+7-5+6-4+5-9+4-5+3-9+2-6+1-10
=27+64+35+24+45+ 20+ 27+ 12 + 10 = 264.

Since 264 = 1124, we see that 264 = 0 (mod 11), so that this could be a valid ISBN number.
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4. (a) Computing the checksum gives
3-0+34+3-7+0+3-0+0+3-34+5+3-6+6+3-94+1=090.
Since 90 = 10 - 9, we have 90 = 0 (mod 10), so that this was scanned correctly.
(b) Computing the checksum gives
3-84+34+3-34+7+3-3+24+30+0+3-04+6+3-2+5="71.
Since 71 =10-7 + 1, we have 71 =1 (mod 10), so that this was not scanned correctly.
(c) Computing the checksum gives
3-0+44+3-04+2+3-9+3+36+7+3-3+0+3-3+4=283.
Since 83 = 10 - 8 4+ 3, we have 83 = 3 (mod 10), so that this was not scanned correctly.

5. Since 5 = 1 (mod 4), it follows from Theorem 2.2 that 52 = 12 (mod 4), so that (applying Theorem
2.2 again) 52 = 1% (mod 4). Continuing, we get 500 = 11990 = 1 (mod 4). Since 5% = 1
(mod 4), Theorem 2.3 tells us that [5'°°] = [1] in Zj.

6. Given n | (a - b) so that a — b = nq for some integer q. Since k | n it follows that k | (a — b) and
therefore a = b (mod k).

7. By Corollary 2.5, a=0, 1, 2 or 3 (mod 4). Theorem 2.2 implies a> = 0, 1 (mod 4). Therefore a?
cannot be congruent to either 2 or 3 (mod 4).

8. By the division algorithm, any integer n is expressible as n = 4q + r where r € {0, 1, 2, 3}, and n
=r (mod 4). If ris 0 or 2 then n is even. Therefore if n is odd then n =1 or 3 (mod 4).

9. (@) (n —a)>=n?-2na + a? = a’ (mod n) since n =0 (mod n).

(b)(2n — a)* = 4n” — 4na + a’ = a? (mod 4n) since 4n = 0 (mod 4n).

10. Suppose the base ten digits of a are (c,C.; . . . €,C,). (Compare Exercise 1.2.32). Then a =
c,10" + ¢,,10"* +. . . ¢;10 + ¢,= ¢, (mod 10), since 10* = 0 (mod 10) for every k > 1.

11. Since there are infinitely many primes (Exercise 1.3.25) there exists a prime p > |a - b|. By
hypothesis, p | (a = b) so the only possibility isa—b =0and a = b.

12. If p=0, 2 or 4 (mod 6), then p is divisible by 2. If p =0 or 3 (mod 6) then p is divisible by 3.
Since p is a prime > 3 these cases cannot occur, so that p =1 or 5 (mod 6). By Theorem 2.3 this
says that [p] = [1] or [5] in Z,.

13. Suppose r, r' are the remainders for a and b, respectively. Theorem 2.3 and Corollary 2.5 imply: a=b

(mod n) if and only if [a] = [b] if and only if [r] = [r']. Then r = r" as in the proof of Corollary
2.5(2).
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15.
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17.

18.

19.

20.

21.

22.

(a) Here is one example: a=b =2 and n = 4.
(b) The assertion is: if n | ab then either n | a or n |b. This is true when n is prime by
Theorem 1.8.

Since (a, n) = 1 there exist integers u, v such that au + nv = 1, by Theorem 1.3. Therefore
au =au + nv=1 (mod n), and we can choose b = u.

Given that a=1 (mod n), we have a = ng + 1 for some integer q. Then (a, n) must divide a — ng
=1, so (a, n) = 1. One example to see that the converse is false is to use a = 2 and n = 3. Then
(a, n) =1 but [a] # [1].

Since 10 = -1 (mod 11), Theorem 2.2 (repeated) shows that 10" = (-I)" (mod 11).

By Exercise 23 we have 125698 = 31 = 4 (mod 9), 23797 = 28 = 1 (mod 9) and 2891235306 = 39 =
12 = 3 (mod 9). Since 4-1 # 3 (mod 9) the conclusion follows.

Proof: If [a] = [b] then a =b (mod n) so that a = b + nk for some integer k. Then (a, n) = (b, n)
using Lemma 1.7.

(&) One counterexample occurs when a =0, b =2 and n = 4.

(b) Given a*>=b? (mod n), we have n | (a2 - b?) = (a + b)(a - b). Since n is prime, use
Theorem 1.8 to conclude that either n|(a + b) or n | (a — b).Therefore, either a=b
(mod n) or a=-b (mod n).

(@) Since 10 =1 (mod 9), Theorem 2.2 (repeated) shows that 10"= 1 (mod 9).
(b) (Compare Exercise 1.2.32). Express integer a in base ten notation: a = ¢, 10" + ... +
c,10+ ¢,. Thena=c,+c, .+ ...C, + ¢, (mod 9), since 10=1 (mod 9).

() Hereis one example:a=2,b=0,c=2,n=4.
(b) We have n | ab — ac = a(b - c). Since (a, n) = | Theorem 1.5 implies that n | (b - ¢) and
therefore b = ¢ (mod n).

2.2 Modular Arithmetic

1.

(a) Answered in the text.

0 + [0 1 2 3 - o 1 2 3
1 2 3 0 0 0 0 0

1 1 2 3 0 1 0 1 2 3

2 2 3 0 1 2 0 2 0 2

3 (3 0 1 2 3 o 3 2 1
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(c) Answered in the text.

D+ o 2 2 3 4 5 6 7 8 9 10 11
o 0o 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 6 7 8 9 10 11 O
2 |2 3 4 5 6 7 8 9 10 11 0 1
3 3 4 5 6 7 8 9 10 11 0 1 2
4 |4 5 6 7 8 9 10 11 0 1 2 3
5 |5 6 7 8 9 10 1 0 1 2 3 4
6 6 7 8 9 10 11 0 1 2 3 4 5
7 |7 8 9 10 11 0 1 2 3 4 5 6
8 8 9 10 11 0 1 2 3 4 5 6 7
9 |9 10 11 0 1 2 3 4 5 6 71 8
0 (10 11 0 1 2 3 4 5 6 7 8 9
11 12 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 1
olo o o o O O O O O O O O
1/0 1 2 3 4 5 6 7 8 9 10 11
2 /|0 2 4 6 8 10 0 2 4 6 8 10
3 /0 3 6 9 0 3 6 9 0 3 6 9
4 |0 4 8 0 4 8 0 4 8 0 4 8
5 /0 5 10 3 8 1 6 1 4 9 2 7
6 /0O 6 0 6 0 6 0 6 0 6 0 6
710 7 2 9 4 11 6 1 8 3 10 5
8 |0 8 4 0 8 4 0 8 4 0 8 4
9|0 9 6 3 0 9 6 3 0 9 6 3
0/0 10 8 6 4 2 0 10 8 6 4 2
127]/0 11 10 9 8 7 6 5 4 3 2 1

However, the notation must be changed to correspond to the new notation. See the tables
in Example 2 to see what it must look like,

2. To solve 22 @ x = [0] in Zg4, substitute each of [0], [1],[2], and [3] in the equation to see if it is a
solution:

r o Is 2 @z = [0]?

0] [0]@[0] @ [0] =[0]+[0] = [0] Yes; solution.
A Meljel]=[0]+[1]=[2 No.
2] RlelleR=[0]+[2]=[2 No.
3] BleBl@Bl=[]®[3]=[0] Yes; solution.

3. x=1,3,50r7in Z, However, the notation should be changed to use, for example,
[3] instead of 3.
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4. x=1,2,3o0r4in Zs However, the notation should be changed to use, for example,
[3] instead of 3.

5. x =1, 2,4,5in Z, However, the notation should be changed to use, for example,
[3] instead of 3.

6. To solve 22 & [8] ® x = [0] in Zg, substitute each of [0],[1],[2], ..., [8] in the equation to see if it is

a solution:
r ol Is2? @ 8] @z = [0]?
[0] [0]® 0] [8] ® [0] =[0] + [0] = [O] Yes; solution.
1] Ne1]e8e[1] =]+ (8 =]0] Yes; solution.
2] RleRle8e2]=M+[7=[2 No.
B] Bl®[3] e8] [3]=I[0]e 6] =[6] No.
[4] Mo e ed=I[7e[5 =3 No
[5] [B]e 5] @ [8 @[5 =[7]®[4] = [2] No.
[6] [6] @ [6] @ [8] ® [6] = [0] & [3] = [3] No.
7 [MefeBle[7=I[4e 2] =6 No.
8] BleBle8 e8] =[1]e[1] =2 No.
The solutions are z = [0] and 2 = [1].

7. To solve 23 @ 22 @ x @ [1] = [0] in Zs, substitute each of [0], [1],[2], ...,
it is a solution:

[7] in the equation to see if

r 22or’0z0(l] s¥3ex20zo(1]=]0]?

0] [1] No.
1] [4] No.
2] [7] No.
(3] [0] No.
[4] [5] No.
[5] [4] No.
6] [3] No.
[7] [0] Yes; solution.
The only solution is x = [7].
8. To solve 23 + 22 = [2] in Zo, substitute each of [0],[1],..., [9] in the equation to see if it is a
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solution: e Tsadea? =2
[0] [0] No.
1] [2] Yes; solution.
2] [2] Yes; solution..
[3] [6] No.
[4] [0] No.
[5] [0] No.
6] [2] Yes; solution.
7] [2] Yes; solution.
[8] [6] No.
9] [0] No.
The solutions are x = [1], [2], [6], and [7].
9. (@) a=3orb. (b)a=2or3. (c) No such element exists in Z .
However, the notation should be changed to use, for example, [3] instead of 3.
10. Part3:[a]® [b)=[a+b]=[b+a]=[b]®[a] sincea+hb=Db+ainZ
Part 7: [a] © ([5] © [c]) = [a] @ [be] = [a(bc)] = [(ab)c] = [ab] @ [c] = ([a] @ [b]) © [c].
Part 8: [a] © ([b] @ [c]) = [a] ® [b + c] = [a(b + c)] = [ab + ac] = [ab] ® [ac] = ([a] © [b]) ® ([a
© [c]).
Part 9: [a] © [b] = [ab] = [ba] = [b] © [a].
11. Every value of x satisfies these equations.
12. See Exercise 2.1.14.
13. See Exercise 2.1.22.
14. @ x=0o0r4inZy (b) x=10,2,30r5inZ,.

However, the notation should be changed to use, for example, [3] instead of 3.
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15. (@) (a+ b =a°+ b°in Z.. (b) @+ h)P=a+hinZ,.
© (@a+b?=a*+0binZ,
(d) One is led to conjecture that (a + b)’ = a’ + b’ inZ,.

To investigate the general result for any prime exponent, use the Binomial Theorem and Exercise
1.4.13.

However, the notation should be changed to use, for example, [a] instead of a.

16. @ a=1,2,30rd4inZ;. (b)a=1lor3inZ,.
(ca=1l1lor2inZ, (da=lor5inZ.

However, the notation should be changed to use, for example, [3] instead of 3.

2.3 The Structure of Z, (p Prime) and Z,

1. (@)1,23,45,6 (b 1,35, 7
() 1,2 45,78 (d) 1,379

2. (a) Since 7 is prime, part (3) of Theorem 2.8 says that there are no zero divisors in Zr.

(b) The zero divisors are 2, 4, and 6, since 2-4 = 0 and 6 -4 = 0. Further computations will show
that the other elements of Zg are not zero divisors.

(¢) The zero divisors are 3 and 6, since 3 - 6 = 0. Further computations will show that the other
elements of Zg are not zero divisors.

(d) The zero divisors are 2,4,5,6, and 8, since 2-5=4-5=6-5 = 8-5 = 0. Further computations
will show that the other elements of Zqy are not zero divisors.

3. In Z,, it appears that every nonzero element is either a unit or a zero divisor.

4. (a) 1 solution in Z, (b) 2 solutions in Z

(c) 0 solutions in Z (d) 2 solutions in Z .

5. We first show that ab # 0. If ab = 0, then since a is a unit, then a 'ab = 0, so that b = 0. But b is
a zero divisor, so that b £ 0 and thus ab # 0. Now, since b is a zero divisor, choose ¢ # 0 such that
be = 0; then (ab)c = a(be) = 0 shows that ab is also a zero divisor.

6. Since n is composite, write n = ab where 1 < a,b < n. Then in Z,, [a] # 0 and [b] # 0, since both
a and b are less than n, but [a][b] = [ab] = [n] = 0, so that a and b are zero divisors.

7. Ifab=0in Z, then ab =0 (mod p) so that p | ab. By Theorem 1.8 we conclude that p | a or
p | b. Then a=0 (mod p) or b =0 (mod p). Equivalently, a=0orb =10 in Zz,.

8. (a) For instance choose a even and b odd. (b) Yes.

9. (a) Suppose a is a unit. Choose b such that ab = 0. Then since a is a unit, we have a~tab =
a~'0 =0, so that b = 0. Thus a is not a zero divisor, since any such b must be zero.

(b) This statement is the contrapositive of part (a), so is also true.
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No element can be both a unit and a zero divisor, by Exercise 9. Choose = # 0 € Z,,, and consider
the set of products {z-1,2-2,...,z-(n—1)}. This set has n—1 elements. If x is not a zero divisor,
then 0 is not one of those elements. So there are two possibilities: either no element is duplicated
in that list, or there is a duplicate. If there is no duplicate, then since there are n — 1 elements and
n — 1 possible values, one of the elements must be 1; that is, for some a € Z,, we have x - a = 1.
Thus z is a unit. If there is a duplicate, say « - a = = - b, then = - (a — b) = 0, so that z is a zero
divisor, which contradicts our original assumption. This shows that if x is not a zero divisor, then
it is a unit.

Since a is a unit, the equation az = b has the solution a~'b, since aa~'b = b. Now, suppose that
ax = b and also ay = b. Then a(x —y) = 0. Since a is not a zero divisor, and a # 0 since it is a
unit, it follows that x —y = 0 so that o = y. Hence the solution is unique.

If x = [r] is a solution then [ar] = [b] so that ar = b (mod n) and ar — b = kn for some integer k.
Thend |aand d | nimplies d | (ar - kn) = b.

Since d divides each of a, b and n there are integers a,, n,, b;. with a = da,, b = db,. and n =

dn,. By Theorem 1.3 there are integers u, v with au + nv = d so that au = d (mod n). Therefore
a(ub,) = b,d = b (mod n) so that x = [ub,] is one solution. Since an, = a,dn; = a;n = 0 (mod n) we
see that x = [ub, + n,t] is a solution for every integer t.

(@) If [ub, + sn,] and [ub, + tn,] are equal in Z, for some 0 <s <t < d, then n | (tn, - sn,)
= (t-s)n, so that d | (t-s) contrary to 0 < (t—s) < d.

(b) If x = [r] is a solution then [ar] = [b] = [a-ub,] so that n | a(r — ub,) so that a(r — ub,) =
nw for some integer w. Cancel d to obtain a,(r — ub,) = n,w. Since (a;, n,) = 1, (Why?)
Theorem 1.5 implies n,| (r — ub,) so that r = ub, + tn, for some t. Then x = [r] = [ub, +
tn,]. Divide t by d to get t = dg + k where 0 < k < d. Then x = [ub; + (dg + k)n,] = [ub,
+ kn,] because [dn,] = [n] = [0].

(a) 15x = 9 in Z4 if and only if 15x = 9 (mod 18) if and only if 5x = 3 (mod 6) if and only if x

= 3 (mod 6) if and only if x = 3, 9, 15 (mod 18) if and only if x = [3], [9], [15] in Zjs.
(b) x = 3, 16, 29, 42 or 55 in Zg.
By Exercise 10, every nonzero element of Z, is a unit or a zero divisor, but not both. So the
statement we are trying to prove is equivalent to the following statement: If a # 0 and b are
elements of Z,, and ax = b has no solutions in Z,,, prove that a is not a unit. The contrapositive

of this statement, which is equivalent to the statement itself, is: If a # 0 and b are elements of Z,,
and a is a unit, then ax = b has at least one solution in Z,,. But Exercise 11 proves this statement.

Suppose that a and b are units. Then (ab)(b~'a™!) = a(bb~')a™! = aa™! =1, so that ab is a unit.

See the Hint when 0 < 1. Otherwise, if 0 £ 1, then since 0 = 1, we must have 1 < 0 since we have
fully ordered Z,,. Adding 1 to both sides repeatedly, using rule (ii), givesn—1 <n—2 < --- < 1 < 0,
so that, by rule (i), n — 1 < 0. Now add 1 to both sides to get 0 < 1, which is a contradiction.






