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Solutions To Problems of Chapter 3

3.1. Let θ̂i, i = 1, 2, . . . ,m, be unbiased estimators of a parameter vector θ, i.e.,
E[θ̂i] = θ, i = 1, . . . ,m. Moreover, assume that the respective estimators
are uncorrelated to each other and that all have the same (total) variance,
σ2 = E[(θi − θ)T (θi − θ)]. Show that by averaging the estimates, e.g.,

θ̂ =
1

m

m∑

i=1

θ̂i,

the new estimator has total variance σ2
c := E[(θ̂− θ)T (θ̂− θ)] = 1

mσ2.

Solution: First, it is easily checked out that the new estimator is also
unbiased. By the definition of the total variance (which is the trace of the
respective covariance matrix), we have

σ2
c = E[(θ̂− θ)T (θ̂− θ)]

= E





(

1

m

m∑

i=1

(

θ̂i − θ
)
)T




1

m

m∑

j=1

(

θ̂j − θ
)









=
1

m2

m∑

i,j=1

E

[(

θ̂i − θ
)T (

θ̂j − θ
)]

=
1

m
σ2,

since E[(θ̂i − θ)T (θ̂j − θ)] = δijσ
2.

3.2. Let a random variable x being described by a uniform pdf in the interval
[0, 1

θ ], θ > 0. Assume a function1 g, which defines an estimator θ̂ := g(x)
of θ. Then, for such an estimator to be unbiased, the following must hold:

∫ 1

θ

0

g(x)dx = 1.

However, such a function g does not exist.

Solution: Necessarily, the pdf of x must be

p(x) =

{

θ, x ∈ [0, 1
θ ],

0, otherwise.

For the estimator to be unbiased,

E[θ̂] =

∫ ∞

−∞

g(x)p(x)dx

=

∫ 1

θ

0

g(x)θdx = θ, ∀θ > 0.

1To avoid any confusion, let g be Lebesgue integrable on intervals of R.
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Hence,

G(θ) :=

∫ 1

θ

0

g(x)dx = 1, ∀θ > 0. (1)

However, such a function g cannot exist. Indeed, one can easily verify by
the basic integral theory that limθ→∞G(θ) = 0, and limθ→0G(θ) = 1, by
(1). Clearly, these results contradict each other.

3.3. A family {p(D; θ) : θ ∈ A} is called complete if, for any vector function
h(D) such that ED[h(D)] = 0, ∀θ, then h = 0.

Show that if {p(D; θ) : θ ∈ A} is complete, and there exists an MVU
estimator, then this estimator is unique.

Solution: Assume two MVU estimators θ1,θ2. Then, ED[θ1 − θ2] =
θ − θ = 0. Hence, by the definition of completeness, θ1 = θ2.

3.4. Let θ̂u be an unbiased estimator, i.e., E[θ̂u] = θ0. Define a biased one by

θ̂b = (1+ α)θ̂u. Show that the range of α where the MSE of θ̂b is smaller

than that of θ̂u is

−2 < − 2MSE(θ̂u)

MSE(θ̂u) + θ20
< α < 0.

Solution: The MSE for the new estimator is

E

[

(θ̂b − θ0)
2
]

= E

[(

(1 + α)θ̂u − θ0

)2
]

= E

[(

(1 + α)(θ̂u − θ0) + αθ0

)2
]

= (1 + α)2MSE(θ̂u) + α2θ20 .

To obtain smaller MSE for the unbiased estimator we must have

(1 + α)2MSE(θ̂u) + α2θ20 < MSE(θ̂u),

or, after using elementary algebra,

α

[

α+
2var(θ̂u)

θ20 + var(θ̂u)

]

< 0,

where var(·) denotes the variance, and clearly MSE(θ̂u) = var(θ̂u). The
solution of the previous inequality results to the desired interval:

− 2 var(θ̂u)

θ20 + var(θ̂u)
< α < 0.
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3.5. Show that for the setting of the Problem 3.4, the optimal value of α is
equal to

α∗ = −
1

1 +
θ2

0

var(θ̂u)

,

where, of course, the variance of the unbiased estimator is equal to the
corresponding MSE.

Solution: The minimum value of

MSE(θ̂b) = E

[

(θ̂b − θ0)
2
]

= (1 + α)2MSE(θ̂u) + α2θ20 ,

with respect to α occurs when the derivative becomes zero, that is when

2(1 + α) var(θ̂u) + 2αθ20 = 0,

or, equivalently, when

α∗ = −
var(θ̂u)

θ20 + var(θ̂u)
= − 1

1 +
θ2

0

var(θ̂u)

.

3.6. Show that the regularity condition for the Cramér-Rao bound holds true
if the order of integration and differentiation can be interchanged.

Solution: By the definition of the expectation we have

E

[
∂ ln p(X ; θ)

∂θ

]

=

∫

· · ·
∫

p(X ; θ)
∂ ln p(X ; θ)

∂θ
dx1 · · · dxN

=

∫

· · ·
∫

∂p(X ; θ)

∂θ
dx1 · · · dxN

=
∂

∂θ

∫

· · ·
∫

p(X ; θ)dx1 · · · dxN

=
∂1

∂θ
= 0.

This is in general true, unless the domain where the pdf is nonzero depends
on the unknown parameter θ.

3.7. Derive the Cramér-Rao bound for the LS estimator, when the training
data result from the linear model

yn = θxn + ηn, n = 1, 2, . . . ,

where xn and ηn are observations of i.i.d random variables, drawn from a
zero mean random process, with variance σ2

x, and a Gaussian white noise
process, with zero mean and variance σ2

η, respectively. Assume, also, that
x and η are independent. Then, show that the LS estimator achieves the
CR bound only asymptotically.
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Solution: First, notice that in this case X = {(xn, yn)}Nn=1. That is, both
yn as well as xn change as we change the training set. Define here the
quantities xN := [x1, x2, . . . , xN ]T , yN := [y1, y2, . . . , yN ]T , and recall,
also, the elementary relations

p(X ; θ) = p(xN ,yN ; θ)

= p(yN |xN ; θ)p(xN ; θ)

= p(yN |xN ; θ)p(xN ).

Hence, ln p(X ; θ) = ln p(yN |xN ; θ) + ln p(xN), and eventually,

∂ ln p(X ; θ)

∂θ
=

∂ ln p(yN |xN ; θ)

∂θ
. (2)

Now, notice that by our original assumptions on the data model,

p(yN |xN ; θ) =
1

(
2πσ2

η

)N/2
exp

(

− 1

2σ2
η

N∑

n=1

(yn − θxn)
2

)

,

or

ln p(yN |xN ; θ) = −N

2
ln
(
2πσ2

η

)
− 1

2σ2
η

N∑

n=1

(yn − θxn)
2.

Thus, by (2),

∂ ln p(X ; θ)

∂θ
=

1

σ2
η

N∑

n=1

(yn − θxn)xn =
1

σ2
η

N∑

n=1

ηnxn. (3)

It can be readily verified by (3) that the regularity condition of the Cramér-
Rao Theorem is satisfied.

Now,

∂2 ln p(X ; θ)

∂θ2
= − 1

σ2
η

N∑

n=1

x2
n.

Therefore

E

[
∂2 ln p(X ; θ)

∂θ2

]

= −N σ2
x

σ2
η

,

and the Cramér-Rao bound is given by

var(θ̂) ≥ 1

N

σ2
η

σ2
x

.

We will now show that this bound cannot be achieved by any unbiased
estimator. The necessary and sufficient condition for the existence of an
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MVU estimator that achieves the Cramér-Rao bound translates, for this
case, to the existence of a function g(X ) such that

∂ ln p(X ; θ)

∂θ
= N

σ2
x

σ2
η

(g(X )− θ),

However, looking at (3), it becomes apparent that such a factorization is
not possible.

Let us now rewrite (3) as

∂ ln p(X ; θ)

∂θ
= N

σ2
x

σ2
η

( 1

Nσ2
x

N∑

n=1

(
ynxn − θx2

n

) )

N
σ2
x

σ2
η

( 1

Nσ2
x

N∑

n=1

ynxn − θ(
1

Nσ2
x

N∑

n=1

x2
n)
)

N
σ2
x

σ2
η

(

g(X )− θ(
1

Nσ2
x

N∑

n=1

x2
n)
)

(4)

where

g(X ) :=
1

Nσ2
x

N∑

n=1

ynxn. (5)

For a large number N of the training data set, we assume the following
approximation:

∑N
n=1 x

2
n ≈ Nσ2

x. By embedding this into (4) we obtain
a form that allows for an unbiased estimator to attain the Cramér-Rao
bound, and the corresponding estimate is given by

θ̂ = g(X ) =
1

Nσ2
x

N∑

n=1

ynxn. (6)

However, (6) is the LS estimator for large values of N . Indeed, by the
definition of the LS estimator we have that

1

N

(
N∑

n=1

x2
n

)

θ̂ =
1

N

N∑

n=1

xnyn, (7)

which results in (6). It is easy to verify that (7) corresponds to an unbiased
estimator.

Let us do it for the sake of an exercise. First of all, let us examine if the
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LS estimator for this more general case is unbiased. We have

E[θ̂] = E

[

1
∑

n x
2
n

∑

n

xnyn

]

= E

[

1
∑

n x
2
n

∑

n

xn(θxn + ηn)

]

= E

[

1
∑

n x
2
n

(

θ
∑

n

x2n +
∑

n

xnηn

)]

= θ + E

[

1
∑

n x
2
n

∑

n

xnηn

]

= θ + Ex

[

1
∑

n x
2
n

Eη|x

[
∑

n

xnηn

]]

= θ + 0 = θ.

In other words, the LS estimator is unbiased even for this case, where both
output as well as input samples change in the training set and this is true
independent of the number of measurements. The corresponding variance
is given by

E

[

(θ̂− θ)2
]

= E




1

(
∑

n x
2
n)

2

(
∑

n

xnηn

)2




= Ex




1

(
∑

n x
2
n)

2 Eη|x




∑

n

x2nη
2
n +

∑

i

∑

j 6=i

xixjηiηj









= σ2
η Ex

[ ∑

n x
2
n

(
∑

n x
2
n)

2

]

= σ2
η E

[
1

∑

n x
2
n

]

.

Asymptotically, this provides the bound that we have previously derived.
However, for finite N , this is different.

3.8. Let us consider the regression model

yn = θTxn + ηn, n = 1, 2, . . . , N,

where the noise vector η := [η1, . . . , ηN ]T comprises samples from zero
mean Gaussian random variable, with covariance matrix Ση. If X :=
[x1, . . . ,xN ]T stands for the input matrix, and y = [y1, . . . , yN ]T , the
vector of the observations, then show that the corresponding estimator,

θ̂ =
(
XTΣ−1

η X
)−1

XTΣ−1
η y,

is an efficient one.

Notice, here, that the previous estimator coincides with the Maximum
Likelihood (ML) one. Moreover, bear in mind that in the case where the
noise process is considered to be white, i.e., Ση = σ2IN , then the ML
estimate becomes equal to the LS one.
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Solution: In the case where the parameter θ becomes a k-dimensional
vector, the Cramér-Rao bound takes a more general form than the one
we have met previously, i.e., the case where the parameter θ is a scalar.
For any unbiased estimator g(X ) of the unknown parameter vector θ, the
Cramér-Rao bound becomes as follows:

E
[
(g(X )− θ)(g(X )− θ)T

]
� I−1(θ), ∀θ,

where I(θ) is the Fisher information matrix defined as

I(θ) := −E

[
∂2 ln p(X ; θ)

∂θ2

]

,

and which is known to be a positive semidefinite matrix. Given any ma-
trices A,B, of the same dimensions, the inequality A � B means that the
matrix A−B is positive semidefinite. A necessary and sufficient condition
for g to be efficient is for the equation

∂ ln p(X ; θ)

∂θ
= I(θ) (g(X )− θ) . (8)

For the present model, we have that X = y and

p(y; θ) =
1

(2π)
N
2 (detΣη)

1

2

exp

(

−1

2
(y −Xθ)

T
Σ−1

η (y −Xθ)

)

.

Hence, ln p(y; θ) = − 1
2 (y −Xθ)

T
Σ−1

η (y −Xθ) + constant, and

∂ ln p(y; θ)

∂θ
= XTΣ−1

η y −XTΣ−1
η Xθ

= XTΣ−1
η X

(
(XTΣ−1

η X)−1XTΣ−1
η y − θ

)
. (9)

The second derivative is equal to

∂2 ln p(y; θ)

∂θ2
= −XTΣ−1

η X,

so that the Fisher information matrix becomes I(θ) = XTΣ−1
η X . By

this, and by a simple inspection of (9), we can readily verify that (8) is

satisfied, if g(y) =
(
XTΣ−1

η X
)−1

XTΣ−1
η y. This establishes the claim.

Moreover, note that the covariance matrix of the efficient estimator is
given by (XTΣηX)−1.

3.9. Assume a set of i.i.d X := {x1, x2, . . . , xN} Gaussian random variables,
with mean µ and variance σ2. Define also the quantities

Sµ :=
1

N

N∑

n=1

xn, Sσ2 :=
1

N

N∑

n=1

(xn − Sµ)
2,

S̄σ2 :=
1

N

N∑

n=1

(xn − µ)2.
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Show that if µ is considered to be known, a sufficient statistic for σ2 is S̄σ2 .
Moreover, in the case where both (µ, σ2) are unknown, then a sufficient
statistic is the pair (Sµ, Sσ2).

Solution: The joint pdf of X is obviously

p(X ) =
1

(2πσ2)
N
2

exp

(

− 1

2σ2

∑

n

(xn − µ)2

)

.

If only σ2 is considered to be unknown, then notice that

p(X ;σ2) =
1

(2πσ2)
N
2

exp

(

− N

2σ2
S̄σ2

)

≡ g1(S̄σ2 , σ2),

where g1 is a function that depends only on S̄σ2 and the unknown σ2.
According to the Fisher-Neyman factorization theorem, the statistic S̄σ2

is sufficient.

Assume now the case where both (µ, σ2) are unknown. Notice that by

N∑

n=1

(xn − µ)2 =

N∑

n=1

(xn − Sµ)
2 +N(Sµ − µ)2

= NSσ2 +N(Sµ − µ)2,

the previous joint pdf becomes

p(X ;µ, σ2) =
1

(2πσ2)
N
2

exp

(

− 1

2σ2

(
NSσ2 +N(Sµ − µ)2

)
)

:= g2
(
(Sµ, Sσ2), (µ, σ2)

)
.

It can be readily verified that g2 depends only on the statistic (Sµ, Sσ2)
and the unknowns (µ, σ2). Hence, once again, by the Fisher-Neyman
factorization theorem, the statistic (Sµ, Sσ2) is sufficient.

3.10. Show that solving the task

minimize L(θ, λ) =
N∑

n=1

(

yn − θ0 −
l∑

i=1

θixni

)2

+ λ
l∑

i=1

|θi|2,

is equivalent with minimizing

minimize L(θ, λ) =
N∑

n=1

(

(yn − ȳ)−
l∑

i=1

θi(xni − x̄i)

)2

+ λ
l∑

i=1

|θi|2,

and the estimate of θ0 is given by

θ̂0 = ȳ −
l∑

i=1

θ̂ix̄i.
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Solution: We have that

L(θ0, θ1:l) =

N∑

n=1

(

yn − θ0 −
l∑

i=1

θixni

)2

+

l∑

i=1

θ2i .

Taking first the derivative with respect to θ0 and setting it equal to zero
we obtain

∂L

∂θ0
=

N∑

n=1

(

− 2(yn − θ0) + 2

l∑

i=1

θixni

)

= 0

or

Nθ0 =

N∑

n=1

yn −
l∑

i=1

θi

N∑

n=1

xni,

which results in

θ0 = ȳ −
l∑

i=1

θix̄i.

That is, the optimum value for θ0, is given in terms of the rest components.
Thus, optimizing with respect to θi, i = 1, 2, . . . , l, this has to be taken
into account. Substituting the above in the Lagrangian, we get

L(θ̂0, θ1:l) =
N∑

n=1

(

yn − ȳ −
l∑

i=1

θi(xni − x̄i)
)2

+
l∑

i=1

θ2i ,

which proves the claim.

Note that the exact form of the regularizer does not enter into the game,
since does not depend on θ0. Hence, this technique of centering the data
is also applicable to other forms of regularization.

3.11. This problem refers to Example 3.4, where a linear regression task with a
real valued unknown parameter θ is considered. Show that MSE(θ̂b(λ)) <

MSE(θ̂MVU), i.e., the ridge regression estimate shows a lower MSE per-
formance than the one for the MVU estimate, if







λ ∈ (0,∞), θ2 ≤ σ2

η

N ,

λ ∈
(

0,
2σ2

η

θ2−
σ2
η

N

)

, θ2 >
σ2

η

N .

Moreover, the minimum MSE performance for the ridge regression esti-
mate is attained at λ∗ = σ2

η/θ
2.

Solution: Theory suggests that our estimate θ̂b is the solution of the task
of minimizing the following loss function with respect to θ ∈ R:

L(θ, λ) =

N∑

n=1

(yn − θ)2 + λθ2, λ ≥ 0.
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The minimizer θ̂b will be obtained if we set the gradient dL(θ, λ)/dθ equal
to zero, or equivalently,

θ̂b(λ) =
N

N + λ

1

N

N∑

n=1

yn :=
N

N + λ
θ̂MVU,

where we used the notation θ̂b(λ) in order to highlight the dependence of

the estimate θ̂b on the parameter λ. Notice here that E[θ̂b(λ)] =
N

N+λθ0,
where θ0 is the estimandum.

Elementary calculus helps us to express MSE
(

θ̂b(λ)
)

as

MSE
(

θ̂b(λ)
)

= E

[(

θ̂b(λ)− E[θ̂b(λ)]
)2
]

+
(

E[θ̂b(λ)]− θ0

)2

=
N2MSE

(

θ̂MVU

)

+ λ2θ20

(N + λ)2
, (10)

and

d

dλ
MSE

(

θ̂b(λ)
)

=
2θ20λ(N + λ)2 − 2

(

N2MSE
(

θ̂MVU

)

+ λ2θ20

)

(N + λ)

(N + λ)4
.

(11)

Let us first examine the range of values of λ > 0 which guarantee that

MSE
(

θ̂b(λ)
)

< MSE
(

θ̂MVU

)

. The case of λ = 0 is excluded from the

discussion, since in such a case, θ̂b(0) = θ̂MVU. It is easy to verify by (10)
that

MSE
(

θ̂b(λ)
)

< MSE
(

θ̂MVU

)

⇔ λ
(

θ20 −MSE
(

θ̂MVU

))

< 2NMSE
(

θ̂MVU

)

.

In the case where θ20 > MSE
(

θ̂MVU

)

, then the desired λ belongs to the

interval (0, 2σ2
η/(θ

2
0 − σ2

η/N)), where we have used the fact that

MSE
(

θ̂MVU

)

=
σ2
η

N
.

In the case where θ20 ≤MSE
(

θ̂MVU

)

, notice that ∀λ > 0, we have that

λ
(

θ20 −MSE
(

θ̂MVU

))

≤ 0 < 2NMSE
(

θ̂MVU

)

,

i.e., the desired λ belongs to the interval (0,∞).

It is also easy to verify by equating the numerator of (11) to zero that

the λ∗ which minimizes MSE
(

θ̂b(λ)
)

becomes equal to σ2
η/θ

2
0. To leave
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no place for ambiguity, we remark here that in the case where θ20 >

MSE
(

θ̂MVU

)

= σ2
η/N , this λ∗ belongs to the interval (0, 2σ

2
η/(θ

2
0−σ2

η/N)),

since

0 < λ∗ =
σ2
η

θ20
< 2

σ2
η

θ20
<

2σ2
η

θ20 −
σ2
η

N

.

3.12. Assume that the model that generates the data is

yn = A sin

(
2π

N
kn+ φ

)

+ ηn, (12)

where A > 0, and k ∈ {1, 2, . . . , N −1}. Assume that ηn are samples from
a Gaussian white noise, of variance σ2

η. Show that there is no unbiased
estimator for the phase, φ, based on N measurement points, yn, n =
0, 1, . . .N − 1, that attains the Cramér-Rao bound.

Solution: The joint pdf of the measurements y := [y0, y1, . . . , yN−1]
T is

given by

p(y;φ) =
1

(2πσ2
ǫ )

N/2
exp

(

− 1

2σ2
ǫ

N−1∑

n=0

(

yn −A sin

(
2π

N
kn+ φ

))2
)

.

The two derivatives of the ln of this function can be easily shown to be

∂ ln p(y;φ)

∂φ
=

A

σ2
ǫ

N−1∑

n=0

(

yn cos

(
2π

N
kn+ φ

)

− A

2
sin

(
4π

N
kn+ 2φ

))

,

(13)
and

∂2 ln p(y;φ)

∂φ2
= − A

σ2
ǫ

N−1∑

n=0

(

yn sin

(
2π

N
kn+ φ

)

+A cos

(
4π

N
kn+ 2φ

))

,

and by substituting the value of yn from (12), the mean value becomes

E

[
∂2 ln p(y;φ)

∂φ2

]

= −A2

σ2
ǫ

N−1∑

n=0

(
1

2
+

1

2
cos

(
4π

N
kn+ 2φ

))

= −NA2

2σ2
ǫ

.

To derive the above, we used the trigonometric formula sin2 α = (1 −
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cos(2α))/2, and also the fact

N−1∑

n=0

cos

(
4π

N
kn+ 2φ

)

=
1

2

N−1∑

n=0

(

ej(
4π
N

kn+2φ) + e−j( 4π
N

kn+2φ)
)

=
1

2
e2jφ

N−1∑

n=0

ej
4π
N

kn +
1

2
e−2jφ

N−1∑

n=0

e−j 4π
N

kn

=
1

2
e2jφ

1− ej
4π
N

kN

1− ej
4π
N

k
+

1

2
e−2jφ 1− e−j 4π

N
kN

1− e−j 4π
N

k

= 0,

since e−j 4π
N

kN = 1, where j :=
√
−1.

Hence, if φ̂ stands for an unbiased estimator of φ, then

var(φ̂) ≥ 2σ2
ǫ

NA2
.

However, looking back at (13), we can verify that there does not exist a
function g such that ∀y ∈ R

N ,

g(y)− φ =
2

NA

N−1∑

n=0

(

yn cos

(
2π

N
kn+ φ

)

− A

2
sin

(
4π

N
kn+ 2φ

))

.

Thus, even if an unbiased estimator exists, this cannot achieve the Cramér-
Rao bound.

3.13. Show that if (y,x) are two jointly distributed random vectors, with values
in R

k × R
l, then the MSE optimal estimator of y given the value x = x

is the regression of y conditioned on x, i.e., E[y|x].
Solution: The proof follows a similar line as the scalar case. Let

f(x) := [f1(x), . . . , fk(x)]
T

be the vector estimator. Then the MSE optimal one should minimize the
sum of square errors per component, i.e.,

E[

k∑

i=1

(yi − fi(x))
2 =

k∑

i=1

E[(yi − fi(x))
2].

This is equivalent with minimizing l scalar terms individually, which can
be carried out as in the text in the Chapter. The result of the ith problem
is that the respective ith component of the MSE optimal estimator is given
by,

ĝi(x) = E[yi|x],
or

ĝ(x) = E[y|x].
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Note that minimizing the sum of square errors per component is equivalent
with minimizing the trace of the error covariance,

E[eeT ] = E[(y − f(x))(y − f(x))T ].

3.14. Assume that x, y are jointly Gaussian random vectors, with covariance
matrix

Σ := E

[[
x− µx

y − µy

]
[
(x− µx)

T , (y − µy)
T
]
]

=

[
Σx Σxy

Σyx Σy

]

.

Assuming also that the matrices Σx and Σ̄ := Σy − ΣyxΣ
−1
x Σxy are

non-singular, then show that the optimal MSE estimator E[y|x] takes the
following form

E[y|x] = E[y] +ΣyxΣ
−1
x (x− E[x]).

Notice that E[y|x] is an affine function of x. In other words, for the case
where x and y are jointly Gaussian, the optimal estimator of y, in the
MSE sense, which is in general a non-linear function, becomes an affine
function of x.

In the special case where x, y are scalar random variables, then

E[y|x] = µy +
ασy

σx
(x− µx) ,

where α stands for the correlation coefficient, defined as

α :=
E [(x− µx)(y − µy)]

σxσy
,

with |α| ≤ 1. Notice, also, that the previous assumption on the non-
singularity of Σx and Σ̄ translates, in this special case, to σx 6= 0 6= σy ,
and |α| < 1.

Solution: First, it is easy to verify that Σyx = ΣT
xy. Moreover, since Σx

and Σ̄ are assumed to be non-singular, then it can be verified [Magn 99]
that the determinant detΣ = detΣx det Σ̄, and that

Σ−1 =

[
Σ−1

x +Σ−1
x ΣxyΣ̄

−1ΣyxΣ
−1
x −Σ−1

x ΣxyΣ̄
−1

−Σ̄−1ΣyxΣ
−1
x Σ̄−1

]

.

Observe that Σ̄ is the Schur complement of Σx in Σ. Also, the previous
formula is the matrix inversion formula in terms of the Schur complement,
as provided in the Appendix A of the book. To save space, let x̄ := x−µx
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and ȳ := y − µy. Then, the joint pdf of x and y becomes

p(x,y) =
1

(2π)l(detΣ)
1

2

exp

(

−1

2

[
x̄T , ȳT

]
Σ−1

[
x̄

ȳ

])

=
1

(2π)l(detΣ)
1

2

exp

(

−1

2
x̄TΣ−1

x x̄− 1

2
x̄TΣ−1

x ΣxyΣ̄
−1ΣyxΣ

−1
x x̄

+x̄TΣ−1
x ΣxyΣ̄

−1ȳ − 1

2
ȳT Σ̄−1ȳ

)

=
1

(2π)l(detΣx)
1

2 (det Σ̄)
1

2

exp

(

−1

2
x̄TΣ−1

x x̄

−1

2

(
ȳ −ΣyxΣ

−1
x x̄

)T
Σ̄−1

(
ȳ − ΣyxΣ

−1
x x̄

)
)

.

As a result, the marginal pdf p(x) becomes

p(x) =

∫

p(x,y)dy =
1

(2π)l/2(detΣx)
1

2

exp

(

−1

2
x̄TΣ−1

x x̄

)

× 1

(2π)l/2(det Σ̄)
1

2

∫

exp

(

−1

2

(
y − µy −ΣyxΣ

−1
x x̄

)T

× Σ̄−1
(
y − µy −ΣyxΣ

−1
x x̄

))
dy

=
1

(2π)l/2(detΣx)
1

2

exp

(

−1

2
x̄TΣ−1

x x̄

)

.

Using the previous relations, we can easily see that

p(y|x) = p(x,y)

p(x)

=
1

(2π)
l
2 (det Σ̄)

1

2

exp

(

−
(
ȳ −ΣyxΣ

−1
x x̄

)T
Σ̄−1

(
ȳ −ΣyxΣ

−1
x x̄

)

2

)

.

A simple inspection of this relation shows that the conditional pdf p(y|x)
is Gaussian with covariance matrix Σ̄ and conditional mean E[y|x] =
µy −ΣyxΣ

−1
x (x− µx).

3.15. Assume a number l of jointly Gaussian random variables {x1, x2, . . . , xl},
and a non-singular matrix A ∈ R

l×l. If x := [x1, x2, . . . , xl]
T , then show

that the components of the vector y, obtained by y = Ax, are also jointly
Gaussian random variables.

A direct consequence of this result is that any linear combination of jointly
Gaussian variables is also Gaussian.

Solution: The Jacobian matrix of a linear transform y = Ax is easily
shown to be

J := J(y;x) = A.
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Also, since A is non-singular, we have that x = A−1y. Without any loss
of generality, assume that E[x] = 0, which results into E[y] = 0. Hence,

Σy = E
[
yyT

]
= E

[
AxxTAT

]
= AΣxA

T .

Clearly, detΣy = (detA)2 detΣx. Then, by the theorem of transformation
for random variables, e.g., [Papo 02], we have the following:

p(y) =
p(x)

| detJ | =
p(A−1y)

| detA|

=
1

(2π)l/2| detA|(detΣx)
1

2

exp

(

−1

2
yTA−TΣ−1

x A−1y

)

=
1

(2π)l/2(detΣy)
1

2

exp

(

−1

2
yTΣ−1

y y

)

,

which establishes the first claim.

For the second claim, assume a non-zero vector a ∈ R
l, and define the lin-

ear combination of {x1, x2, . . . , xl} as y = aTx. Elementary linear algebra
guarantees that there always exists a set of non-zero l-dimensional vectors
{a1, . . . ,al−1} such that the collection {a,a1, . . . ,al−1} constitutes a ba-
sis of Rl [Magn 99]. Thus, the matrix A := [a,a1, . . . ,al−1]

T ∈ R
l×l is

non-singular, and the first component of the vector y = Ax is the quantity
y = aTx. We have already seen by the first claim that the components
of y are jointly Gaussian random variables. Moreover, a classical result
states that if a number of random variables are jointly Gaussian, then
each one of them, and thus y, is also Gaussian (the opposite is not always
true) [Papo 02]. This establishes the second claim of the problem.

3.16. Let x ∈ R
l be a vector of jointly Gaussian random variables, of covariance

matrix Σx. Consider the general linear regression model

y = Θx+ η,

where Θ ∈ R
k×l is a parameter matrix and η is the vector of noise samples,

which are considered to be Gaussian, with zero mean, and with covariance
matrix Ση, independent of x. Then show that y and x are jointly Gaus-
sian, with covariance matrix given by

Σ =

[
ΘΣxΘ

T +Σeta ΘΣx

ΣxΘ
T Σx

]

.

Solution: The combined vector is given by

[
y

x

]

=

[
Θx+ η

x

]

=

[
Θ Ik
Il 0l×k

]

︸ ︷︷ ︸

A

[
x

η

]

.
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However, since x and η are both Gaussian vector variables, and mutually
independent, then they are also jointly Gaussian. Notice also that the
matrix A is non-singular; indeed, a simple permutation of the columns of

A leads to the matrix
[

Ik Θ
0l×k Il

]

, whose determinant can be easily seen to

be equal to 1.

Therefore, according to Problem 3.15, [yT ,xT ]T is also jointly Gaussian.
The covariance matrix is a straightforward result following the definitions
of the involved variables.

3.17. Show that a linear combination of Gaussian independent variables is also
Gaussian.

Solution: This is a direct consequence of Problem 3.15, since independent
Gaussian variables can be readily checked out that they are also jointly
Gaussian.

3.18. Show that if a sufficient statistic T (X ) for a parameter estimation problem
exists, then T (X ) suffices to express the respective ML estimate.

Solution: This is direct consequence of the Fisher-Neyman factorization
theorem. Indeed, recall that T (X ) is sufficient iff the respective joint
pdf can be factored as: p(X ; θ) = h(X )g(T (X ), θ), where h and g are
appropriate functions. Hence, by the definition of the ML estimate,

θ̂ML ≡ argmaxθ p(X ; θ) = argmaxθ g(T (X ), θ).

In other words, T (X ) is sufficient, via g, to obtain the ML estimate.

3.19. Show that if an efficient estimator exists then it is also optimal in the ML
sense.

Solution: Assume the existence of an efficient estimator, i.e., a function g
which achieves the Cramér-Rao bound. A necessary and sufficient condi-
tion for g to be efficient, is for (8) to hold true for all values of θ. Since

(8) holds for all values of θ, then it holds true for θ = θ̂ML. However,

for this value, the left-hand-side of (8) becomes zero, and since I(θ̂ML) is

non-singular, we obtain that g(X ) = θ̂ML. This establishes the claim.

3.20. Let the observations resulting from an experiment be xn, n = 1, 2, . . . , N .
Assume that they are independent and that they originate from a Gaussian
pdf N (µ, σ2). Both, the mean and the variance, are unknown. Prove that
the ML estimates of these quantities are given by

µ̂ML =
1

N

N∑

n=1

xn, σ̂2
ML =

1

N

N∑

n=1

(xn − µ̂ML)
2.

Solution: The log-likelihood function is given by

L(µ, σ2) = −N

2
ln(2π)− N

2
lnσ2 − 1

2σ2

N∑

n=1

(xn − µ)2.
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Taking the gradient with respect to µ, σ2, and equating it to zero we obtain
the following system of equations

1

σ2

N∑

n=1

(xn − µ) = 0

−N

2

1

σ2
+

1

2σ4

N∑

n=1

(xn − µ)2 = 0.

The solution of this system leads trivially to the required result.

3.21. Let the observations xn, n = 1, 2, . . . , N, come from the uniform distribu-
tion

p(x; θ) =

{
1
θ , 0 < x ≤ θ,

0, otherwise.

Obtain the ML estimate of θ.

Solution: The likelihood function is given by

L(x; θ) =

N∏

n=1

1

θ
=

1

θN
.

We know that θ ≥ xn, n = 1, . . . , N , or equivalently, θ ≥ maxn=1,...,N xn.
Hence, the likelihood function is maximized by taking the minimum value
of θ, which is

θ̂ML = max{x1, x2, . . . , xN}.

3.22. Obtain the ML estimate of the parameter λ > 0 of the exponential distri-
bution

p(x) =

{

λ exp(−λx), x ≥ 0,

0, x < 0,

based on a set of measurements, xn, n = 1, 2, . . . , N .

Solution: The log-likelihood function is

L(x;λ) = N lnλ− λ

N∑

n=1

xn.

Taking the derivative and equating to zero we obtain

N

λ
−

N∑

n=1

xn = 0,

which leads to

λ̂ML =
N

∑N
n=1 xn

.
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3.23. Assume an µ ∼ N (µ0, σ
2
0), and a stochastic process {xn}∞n=−∞, consisting

of i.i.d random variables, such that p(xn|µ) = N (µ, σ2). Consider a num-
ber of N members of the process {xn}∞n=−∞, i.e., X ≡ {x1, x2, . . . , xN},
and prove that the posterior p(x|X ), of any x = xn0

conditioned on X ,
turns out to be Gaussian with mean µN and variance σ2 + σ2

N , where

µN ≡
Nσ2

0x̄+ σ2µ0

Nσ2
0 + σ2

, σ2
N ≡

σ2σ2
0

Nσ2
0 + σ2

.

Solution: From basic theory we have that

p(µ|X ) =
p(X|µ)p(µ)

∫
p(X|µ)p(µ)dµ = αp(µ)

N∏

k=1

p(xk|µ),

or

p(µ|X ) =
α√
2πσ0

exp

(

−1

2

(µ− µ0)
2

σ2
0

) N∏

k=1

1√
2πσ

exp

(

−1

2

(xk − µ)2

σ2

)

= α1 exp

(

−1

2

(
N∑

k=1

(
µ− xk

σ

)2

+

(
µ− µ0

σ0

)2
))

= α2 exp

(

−1

2

((
N

σ2
+

1

σ2
0

)

µ2 − 2

(

1

σ2

N∑

k=1

xk +
µ0

σ2
0

)

µ

))

= α2 exp

(

−1

2

(

µ2Nσ2
0 + σ2

σ2σ2
0

− 2µ
Nσ2

0x̄+ σ2µ0

σ2σ2
0

))

= α2 exp

(

−Nσ2
0 + σ2

2σ2σ2
0

(

µ2 − 2µ
Nσ2

0x̄+ σ2µ0

Nσ2
0 + σ2

))

= α3 exp

(

− (µ− µN )2

2σ2
N

)

,

where α, α1, α2, α3 are factors independent of µ, and

x̄ :=
1

N

N∑

k=1

xk,

µN :=
Nσ2

0x̄+ σ2µ0

Nσ2
0 + σ2

,

σ2
N :=

σ2σ2
0

Nσ2
0 + σ2

.

Since p(µ|X ) is a pdf, then necessarily

α3 =
1√

2πσN

.
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Hence, limN→∞ σ2
N = 0, and for large N , p(µ|X ) behaves like a δ function

centered around µN . Thus,

p(x|X ) =

∫

p(x|µ)p(µ|X )dµ ≃ p(x|µN ) =
1√
2πσ

exp

(

− (x− µN )2

2σ2

)

.

Therefore, p(x|X ) tends to a Gaussian pdf with mean µN and variance
σ2. Furthermore, limN→∞ µN = x̄.

For the general case of any value of N , and not only the case of large N ,
we have

p(x|X ) =

∫

p(x|µ)p(µ|X )dµ

=
1

2πσσN

∫

exp

(

− (x− µ)2

2σ2

)

exp

(

− (µ− µN )2

2σ2
N

)

dµ. (14)

Hence, in order to obtain p(x|X ), the previous integration has to take
place. Here we will follow another path, which avoids any direct in-
tegration. Assume a random variable y defined as y := ξ + ν, where
ξ ∼ N (0, σ2) and ν ∼ N (µN , σ2

N ), independent of each other. It is well-
known [Papo 02] that the pdf of y is given by the joint pdf of ξ and ν as
follows:

p(y) =

∫

pξν(y − ν, ν)dν.

However, since ξ and ν are assumed to be independent, then pξν(ξ, ν) =
pξ(ξ)pν(ν), and

p(y) =

∫

pξ(y − ν)pν(ν)dν

=
1

2πσσN

∫

exp

(

− (y − ν)2

2σ2

)

exp

(

− (ν − µN )2

2σ2
N

)

dν,

which is identical to (14). However, recall from basic statistics [Papo 02]
that y, being the sum of two independent Gaussians is also Gaussian (see,
also, Problem 3.17), with mean the sum of the mean values and variance
the sum of the variances. Therefore, (14) becomes

p(x|X ) =
1

√

2π(σ2 + σ2
N )

exp

(

− (x− µN )2

2(σ2 + σ2
N )

)

.

3.24. Show that for the linear regression model,

y = Xθ + η,

the a-posteriori probability p(θ|y) is a Gaussian one, if the prior distri-
bution probability is given by p(θ) = N (θ, Σ0), and the noise samples
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follow the multivariate Gaussian distribution p(η) = N (0, Ση). Compute
the mean vector and the covariance matrix of the posterior distribution.

Solution: It can be easily checked that p(θ|y) = const×exp
(

− 1
2Ψ

)

, where

Ψ = (y −Xθ)TΣ−1
η (y −Xθ) + (θ − θ0)

TΣ−1
0 (θ − θ0)

= yTΣ−1
η y − 2yTΣ−1

η Xθ + θTXTΣ−1
η Xθ + (θ − θ0)

TΣ−1
0 (θ − θ0).

From now on, all terms that will be independent of θ will be collected in
constant terms. Hence

Ψ = α1 − 2yTΣ−1
η Xθ + (θ − θ0)

TΣ−1
0 (θ − θ0)

+ (θ − θ0)
TXTΣ−1

η X(θ − θ0)− θT
0 X

TΣ−1
η Xθ0 + 2θT

0 X
TΣ−1

η Xθ.

As a result,

Ψ = α2 + (θ − θ0)
T
(

Σ−1
0 +XTΣ−1

η X
)

(θ − θ0)

+ 2θT
0 X

TΣ−1
η Xθ − 2yTΣ−1

η Xθ

= α3 + (θ − θ0)
T
(

Σ−1
0 +XTΣ−1

η X
)

(θ − θ0)

− 2 (y −Xθ0)
T
Σ−1

η X (θ − θ0) . (15)

In the sequel, we will follow a standard trick that we do in situations
like that. We introduce an auxiliary variable θ̄, whose value is to be
determined so that to make the following to be true,

Ψ = α4 + (θ − θ0 − θ̄)T
(

Σ−1
0 +XTΣ−1

η X
)

(θ − θ0 − θ̄)

= α4 + (θ − θ0)
T
(

Σ−1
0 +XTΣ−1

η X
)

(θ − θ0)

+ θ̄T
(

Σ−1
0 +XTΣ−1

η X
)

θ̄

− 2θ̄T
(

Σ−1
0 +XTΣ−1

η X
)

(θ − θ0). (16)

Inspection of (15) and (16) indicates that this can happen if we choose

θ̄ =
(

Σ−1
0 +XTΣ−1

η X
)−1

XTΣ−1
η (y −Xθ0) .

Then, we can finally write that

Ψ = α4 + (θ − E[θ|y])T Σ−1
θ|y (θ − E[θ|y]) ,

where

E[θ|y] = θ0 +
(

Σ−1
0 +XTΣ−1

η X
)−1

XTΣ−1
η (y −Xθ0) ,

and

Σθ|y =
(

Σ−1
0 +XTΣ−1

η X
)−1

.
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3.25. Assume that xn, n = 1, 2 . . . , N , are i.i.d observations from a Gaussian
N (µ, σ2). Obtain the MAP estimate of µ, if the prior follows the expo-
nential distribution

p(µ) = λ exp (−λµ) , λ > 0, µ ≥ 0.

Solution: Upon defining X := {x1, x2, . . . , xN}, the posterior distribution
is given by

p(µ|X ) ∝ p(X|µ)p(µ) = λ exp (−λµ)
(2π)N/2σN

N
∏

n=1

exp

(

− (xn − µ)2

2σ2

)

.

Taking the ln, differentiating with respect to µ, and equating to zero we
obtain

∂
(

−λµ− 1
2σ2

∑N
n=1(xn − µ)2

)

∂µ
= 0,

or

−λ+
1

σ2

N
∑

n=1

(xn − µ) = 0.

Finally,

µ̂MAP =

∑N
n=1 xn − λσ2

N
,

for nonnegative values of the numerator.

3.26. Consider, once more, the same regression model as that of Problem 3.8,
but with Ση = IN . Compute the MSE of the predictions E[(y−ŷ)2], where
y is the true response and ŷ is the predicted value, given a test point x

and using the LS estimator,

θ̂ =
(

XTX
)−1

XTy.

The LS estimator has been obtained via a set ofN measurements, collected
in the input matrix X and y, where the notation has been introduced
previously in this chapter. The expectation E[·] is taken with respect to
to y, the training data, D and the test points x. Observe the dependence
of the MSE on the dimensionality of the space.

(Hint: Consider, first, the MSE, given the value of a test point x, and
then take the average over all the test points.)

Solution: From the theory, we have that given a point x, the LS estimator
is given by

ŷ = yTX(XTX)−1x.
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Moreover,

MSE(θ̂(x)) = E
[

(y − ŷ)2
]

= E

[

(θTx+ η− θ̂
T
x)2

]

= σ2
η + ED

[

xT (θ − θ̂)(θ − θ̂)Tx
]

+ 2ED|η

[

(θ − θ̂)TxEη[η]
]

= σ2
η + ED

[

xT (θ − θ̂)(θ − θ̂)Tx
]

= σ2
η +

[

xTΣ
θ̂
x
]

= σ2
η + σ2

η

[

xT (XTX)−1x
]

,

where the result of Problem 3.8 for the covariance matrix of the LS esti-
mator has been used, i.e.,

Σ
θ̂
= σ2

η(X
TX)−1.

Also, we used the fact that the LS is an unbiased estimator, hence ED|η[θ̂] =

ED[θ̂] = θ.

We can now make the following approximation, for large values of N :

Σ := Ex

[

xxT
]

≈ 1

N
XTX,

where Σ is the covariance matrix of the (zero mean) input vectors. Then,
we have

MSE(θ̂) ≈ σ2
η +

σ2
η

N
Ex

[

xTΣ−1x
]

=
σ2
η

N
Ex

[

trace
{

Σ−1xxT
}]

=
σ2
η

N
trace

{

Σ−1
Ex

[

xxT
]}

=
σ2
η

N
trace

{

Σ−1Σ
}

=
σ2
η

N
l.

In other words, the MSE is proportional to the dimensionality of the space
as well as the variance of the noise, and inversely proportional to the
number of data points. That is, for given number of points and noise
variance, the error depends on the dimensionality, which is a manifestation
of the curse of dimensionality.
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