
2 SYSTEMS OF LINEAR EQUATIONS AND
MATRICES

2.1 Systems of Linear Equations: An Introduction

Concept Questions page 79

1. a. There may be no solution, a unique solution, or infinitely many solutions.

b. There is no solution if the two lines represented by the given system of linear equations are parallel and distinct;

there is a unique solution if the two lines intersect at precisely one point; there are infinitely many solutions if the

two lines are parallel and coincident.
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2. a. i. The system is dependent if the two equations in the system describe the same line.

ii. The system is inconsistent if the two equations in the system describe two lines that are parallel and distinct.
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Exercises page 79

1. Solving the first equation for x , we find x  3y  1. Substituting this value of x into the second equation yields

4 3y  1 3y  11, so 12y  4 3y  11 and y  1. Substituting this value of y into the first equation gives

x  3 1 1  2. Therefore, the unique solution of the system is 2 1.

2. Solving the first equation for x , we have 2x  4y  10, so x  2y  5. Substituting this value of x into the second

equation, we have 3 2y  5 2y  1, 6y  15 2y  1, 8y  16, and y  2. Then x  2 2  5  1.

Therefore, the solution is 1 2.
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52 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES

3. Solving the first equation for x , we have x  7 4y. Substituting this value of x into the second equation, we have
1
2 7 4y 2y  5, so 7 4y  4y  10, and 7  10. Clearly, this is impossible and we conclude that the system

of equations has no solution.

4. Solving the first equation for x , we obtain 3x  7 4y, so x  7
3  4

3 y. Substituting this value of x into the second

equation, we obtain 9


7
3  4

3 y

 12y  14, so 21 12y  12y  14, or 21  14. Since this is impossible, we

conclude that the system of equations has no solution.

5. Solving the first equation for x , we obtain x  7 2y. Substituting this value of x into the second equation, we

have 2 7 2y y  4, so 14 4y  y  4, 5y  10, and y  2. Then x  7 2 2  7 4  3. We

conclude that the solution to the system is 3 2.

6. Solving the second equation for x , we obtain x  1
3 y  2. Substituting this value of x into the first equation, gives

3
2


 1

3 y  2

 2y  4, 1

2 y  2y  4 3,  5
2 y  1, and y   2

5 . Then x  2 1
3


2

5


 32

15 . Therefore, the

solution of the system is


32
15  2

5


.

7. Solving the first equation for x , we have 2x  5y  10, so x  5
2 y  5. Substituting this value of x into the second

equation, we have 6


5
2 y  5


 15y  30, 15y  30 15y  30, and 0  0. This result tells us that the second

equation is equivalent to the first. Thus, any ordered pair of numbers x y satisfying the equation 2x  5y  10

(or 6x  15y  30) is a solution to the system. In particular, by assigning the value t to x , where t is any real

number, we find that y  2 2
5 t so the ordered pair,


t 2

5 t  2


is a solution to the system, and we conclude that

the system has infinitely many solutions.

8. Solving the first equation for x , we have 5x  6y  8, so x  6
5 y  8

5 . Substituting this value of x into the second

equation gives 10


6
5 y  8

5


 12y  16, 12y  16 12y  16, and 0  0. This result tells us that the second

equation is equivalent to the first. Thus, any ordered pair of numbers x y satisfying the equation 5x  6y  8 (or

10x  12y  16) is a solution to the system. In particular, by assigning the value t to x , where t is any real number,

we find that y  5
6 t  4

3 . So the ordered pair,

t 5

6 t  4
3


is a solution to the system, and we conclude that the

system has infinitely many solutions.

9. Solving the first equation for x , we obtain 4x  5y  14, so 4x  14  5y, and x  14
4  5

4 y  7
2  5

4 y.

Substituting this value of x into the second equation gives 2


7
2  5

4 y

 3y  4, so 7  5

2 y  3y  4,

11
2 y  11, and y  2. Thus, x  7

2  5
4 2  1. We conclude that the ordered pair 12 satisfies the given

system of equations.

10. Solving the first equation for x , we have 5
4 x  2

3 y  3, so 5
4 x  2

3 y  3 and x  4
5


2
3 y  3


 8

15 y  12
5 .

Substituting this value of x into the second equation yields 1
4


8

15 y  12
5


 5

3 y  6, so 2
15 y  3

5  5
3 y  6,

27
15 y  27

5 , and y  3. Then x  8
15 3 12

5  20
5  4. Thus, the ordered pair 4 3 satisfies the given equation.
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11. Solving the first equation for x , we obtain 2x  3y  6, so x  3
2 y  3. Substituting this value of x into the second

equation gives 6


3
2 y  3


 9y  12, so 9y  18 9y  12 and 18  12. which is impossible. We conclude that

the system of equations has no solution.

12. Solving the first equation for y, we obtain 2
3 x  y  5, so y   2

3 x  5. Substituting this value of y into the second

equation yields 1
2 x  3

4


 2

3 x  5

 15

4 , so 1
2 x  1

2 x  15
4  15

4 and 15
4  15

4 . We conclude that the system of

equations has infinitely many solutions of the form

t 5 2

3 t


.

13. Solving the first equation for x , we obtain 3x  5y  1, so x  5
3 y  1

3 . Substituting this value of y into

the second equation yields 2


5
3 y  1

3


 4y  1, 10

3 y  2
3  4y  1,  2

3 y  1
3 , and y  1

2 . Thus,

x  5
3


1
2


 1

3  1
2 , and the system has the unique solution


1
2 

1
2


.

14. Solving the first equation for x , we obtain 10x  15y  3, so x  3
2 y  3

10 . Substituting this value of y into the

second equation yields 4


3
2 y  3

10


 6y  3, 6y  6

5  6y  3, and 6
5  3, which is impossible. We

conclude that the system of equations has no solution.

15. Solving the first equation for x , we obtain 3x  6y  2, so x  2y  2
3 . Substituting this value of y into the second

equation yields 3
2


2y  2

3


 3y  1, 3y  1  3y  1, and 0  0. We conclude that the system of

equations has infinitely many solutions of the form


2t  2
3  t


, where t is a parameter.

16. Solving the first equation for x , we obtain 3
2 x  1

2 y  1, so x  1
3 y  2

3 . Substituting this value of y into the second

equation yields 


1
3 y  2

3


 1

3 y   2
3 and 0  0. We conclude that the system of equations has infinitely many

solutions of the form


1
3 t  2

3  t


, where t is a parameter.

17. Solving the first equation for y, we obtain y  02x  18. Substituting this value of y into the second equation

gives 04x  03 02x  18  02, 034x  034, and x  1. Substituting this value of x into the first

equation, we have y  02 1 18  2. Therefore, the solution is 1 2.

18. Solving the first equation for x , we find 03x  04y  02, 3x  4y  2, and x  4
3 y  2

3 . Substituting this

value of x into the second equation, which we rewrite as 2x  5y  1, we have 2


4
3 y  2

3


 5y  1,

 8
3 y  4

3  5y  1, 7
3 y  7

3 , and y  1. Thus, x  4
3 1 2

3  2 and the unique solution is 2 1.

19. Solving the first equation for y, we obtain y  2x  3. Substituting this value of y into the second equation yields

4x  k 2x  3  4, so 4x  2xk  3k  4, 2x 2 k  4 3k, and x  4 3k

2 2 k
. Since x is not defined when

the denominator of this last expression is zero, we conclude that the system has no solution when k  2.

20. Solving the second equation for x , we have x  4 ky. Substituting this value of x into the first equation gives

3 4 ky 4y  12, so 12 3ky  4y  12 and y 3k  4  0. Since this last equation is always true when

k  4
3 , we see that the system has infinitely many solutions when k  4

3 . When k  4
3 , x  4 ky  4 4

3 y, so

the solutions are the set of all ordered pairs


4 4
3 t t


, where t is a parameter.
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21. Solving the first equation for x in terms of y, we have ax  by  c or x  b

a
y  c

a
(provided a  0). Substituting

this value of x into the second equation gives a


b

a
y  c

a


by  d, bycby  d, 2by  dc, and y  d  c

2b

(provided b  0). Substituting this into the expression for x gives x  b

a


d  c

2b


 c

a
 d  c

2a
 c

a
 c  d

2a
.

Thus, the system has the unique solution


c  d

2a


d  c

2b


if a  0 and b  0.

22. Solving the first equation for x in terms of y, we have ax  by  e or x  b

a
y  e

a
(provided a  0).

Substituting this value of x into the second equation gives c


b

a
y  e

a


 dy  f , bc

a
y  ce

a
 dy  f ,

ad  bc

a


y  f  ce

a
, and y  a

ad  bc


a f  ce

a


 a f  ce

ad  bc
(provided ad  bc  0). Substituting this into

the expression for x gives x  b

a


a f  ce

ad  bc


 e

a
 b a f  ce e ad  bc

a ad  bc
 ed  bf

ad  bc
. If a  0, the

system reduces to

by  e

cd  dy  f

and so y  e

b
and x  b f  ed

bc
, provided b  0 and c  0 Thus, if a  0, b  0, c  0, and ad  bc  0, the

system has the unique solution


ed  b f

ad  bc


a f  ce

ad  bc


.

23. Let x and y denote the number of acres of corn and wheat planted, respectively. Then x  y  500. Since the cost

of cultivating corn is $42acre and that of wheat $30acre and Mr. Johnson has $18,600 available for cultivation,

we have 42x  30y  18,600. Thus, the solution is found by solving the system of equations

x  y  500
42x  30y  18,600

24. Let x be the amount of money Michael invests in the institution that pays interest at the rate of 3% per year and y

the amount of money invested in the institution paying 4% per year. Since his total investment is $2000, we have

x  y  2000. Next, since the interest earned during a one-year period was $144, we have 003x  004y  144.

Thus, the solution is found by solving the system of equations

x  y  2000
003x  004y  144

25. Let x denote the number of pounds of the $800lb coffee and y denote the number of pounds of the $9lb coffee.

Then x  y  100. Since the blended coffee sells for $860lb, we know that the blended mixture is worth

860 100  $860. Therefore, 8x  9y  860. Thus, the solution is found by solving the system of equations

x  y  1000
8x  9y  860
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26. Let the amount of money invested in the bonds yielding 4% be x dollars and the amount of money invested in the

bonds yielding 5% be y dollars. Then x  y  30,000. Also, since the yield from both investments totals $1320, we

have 004x  005y  1320. Thus, the solution to the problem can be found by solving the system of equations

x  y  30,000
004x  005y  1320

27. Let x denote the number of children who ride the bus during the morning shift and y the number of adults who

ride the bus during the morning shift. Then x  y  1000. Since the total fare collected is $1300, we have

05x  15y  1300. Thus, the solution to the problem can be found by solving the system of equations

x  y  1000
05x  15y  1300

28. Let x , y, and z denote the number of one-bedroom units, two-bedroom townhouses, and three-bedroom townhouses,

respectively. Since the total number of units is 192, we have x  y  z  192. Next, the number of family units is

equal to the number of one-bedroom units, and this implies that y  z  x , or x  y  z  0. Finally, the number of

one-bedroom units is three times the number of three-bedroom units, and this implies that x  3z, or x  3z  0.

Summarizing, we have the system

x  y  z  192
x  y  z  0
x  3z 0

29. Let x and y denote the costs of the ball and the bat, respectively. Then

x  y  110
y  x  100

or x  y  110
x  y  100

30. Let x and y denote the amounts of money invested in projects A and B, respectively. Then

x  y  70,000
x  y  20,000

31. Let x be the amount of money invested at 6% in a savings account, y the amount of money invested at 8% in

mutual funds, and z the amount of money invested at 12% in bonds. Since the total interest was $21,600, we have

006x  008y  012z  21,600. Also, since the amount of Sid’s investment in bonds is twice the amount of the

investment in the savings account, we have z  2x . Finally, the interest earned from his investment in bonds was

equal to the interest earned on his money mutual funds, so 008y  012z. Thus, the solution to the problem can be

found by solving the system of equations

006x  008y  012z  21,600
2x  z  0

008y  012z 0
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32. Let x , y, and z denote the amount to be invested in high-risk, medium-risk, and low-risk stocks, respectively.

Since all of the $200,000 is to be invested, we have x  y  z  200,000. The investment goal of a return of

$20,000year leads to 015x  010y  006z  20,000. Finally, the decision that the investment in low-risk stocks

be equal to the sum of the investments in the stocks of the other two categories leads to z  x  y So, we are led to

the problem of solving the system

x  y  z  200,000
015x  01y  006z  20,000

x  y  z 0

33. The percentages must add up to 100%, so

x  y  z  100
x  y  67
x  z  17

34. Let x , y, and z denote the numbers of respondents who answered “yes,” “no,” and “not sure,” respectively. Then we

have
x  y  z  1000

y  z  370
x  y  340

35. Let x , y, and z denote the number of 100-lb. bags of grade A, grade B, and grade C fertilizers to be

produced. The amount of nitrogen required is 18x  20y  24z, and this must be equal to 26,400, so we have

18x  20y  24z  26,400. Similarly, the constraints on the use of phosphate and potassium lead to the equations

4x  4y  3z  4900 and 5x  4y  6z  6200, respectively. Thus we have the problem of finding the solution to

the system

18x  20y  24z  26,400 (nitrogen)
4x  4y  3z  4900 (phosphate)
5x  4y  6z  6200 (potassium).

36. Let x be the number of tickets sold to children, y the number of tickets sold to students, and z the number of tickets

sold to adults at that particular screening. Since there was a full house at that screening, we have x  y  z  900.

Next, since the number of adults present was equal to one-half the number of students and children present, we have

z  1
2 x  y. Finally, the receipts totaled $5600, and this implies that 4x  6y  8z  5600. Summarizing, we

have the system

x  y  z  900
x  y  2z  0

4x  6y  8z  5600

37. Let x , y, and z denote the number of compact, intermediate, and full-size cars to be purchased, respectively. The

cost incurred in buying the specified number of cars is 18,000x  27,000y  36,000z. Since the budget is

$225 million, we have the system

18,000x  27,000y  36,000z  2,250,000
x  2y  0
x  y  z  100
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38. Let x be the amount of money invested in high-risk stocks, y the amount of money invested in medium-risk stocks,

and z the amount of money invested in low-risk stocks. Since a total of $200,000 is to be invested, we have

x  y  z  200,000. Next, since the investment in low-risk stocks is to be twice the sum of the investments in

high- and medium-risk stocks, we have z  2 x  y. Finally, the expected return of the three investments is given

by 015x  010y  006z and the goal of the investment club is that an average return of 9% be realized on the total

investment. If this goal is realized, then 015x  010y  006z  009 x  y  z. Summarizing, we have the

system of equations

x  y  z  200,000
2x  2y  z  0
6x  y  3z  0

39. Let x be the number of ounces of Food I used in the meal, y the number of ounces of Food II used in the meal, and z

the number of ounces of Food III used in the meal. Since 100% of the daily requirement of proteins, carbohydrates,

and iron is to be met by this meal, we have the system of linear equations

10x  6y  8z  100
10x  12y  6z  100
5x  4y  12z  100

40. Let x , y, and z denote the amounts of money invested in stocks, bonds, and the money market, respectively. Then

we have
x  y  z  100,000 (the investments total $100,000)

012x  008y  004z  10,000 (the annual income is $10,000)
z  020x  010y (the investment mix)

Equivalently,

x  y  z  100,000
12x  8y  4z  1,000,000
20x  10y  100z  0

41. Let x , y, and z denote the numbers of front orchestra, rear orchestra, and front balcony seats sold for this

performance, respectively. Then we have

x  y  z  1000 (tickets sold total 1000)
80x  60y  50z  62,800 (total revenue)

x  y  2z  400 (relationship among different types of tickets)

42. Let x , y, and z denote the numbers of dozens of sleeveless, short-sleeve, and long-sleeve blouses produced per day,

respectively. Then we have

9x  12y  15z  4800
22x  24y  28z  9600
6x  8y  8z  2880

43. Let x , y, and z denote the numbers of days spent in London, Paris, and Rome, respectively. Then we have

280x  330y  260z  4060 (hotel bills)
130x  140y  110z  1800 (meals)

x  y  z  0 (since x  y  z)
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44. Let x , y, z, and  denote the numbers of days spent in Boston, New York, Philadelphia, and Washington, D.C.,

respectively. Then we have

x  y  z    14
240x  400y  160z  200  4040

y  x 

y  3z

Equivalently,

x  y  z    14
x  y    0

y  3z  0
240x  400y  160z  200  4040

45. True. In fact it has exactly one solution. Suppose the system is y  m1x  b1, y  m2x  b2, with

m1  m2. Then subtracting, we obtain 0  m2 m1 x  b2  b1. Therefore, x  b1  b2

m2  m1
and

y  m1


b1  b2

m2 m1


 b1  m1b1 m1b2 m2b1  m1b1

m2 m1
 m2b1  m1b2

m2  m1
.

46. True. If the three lines coincide, then the system has infinitely many solutions corresponding to all points on the

(common) line. If at least one line is distinct from the others, then the system has no solution.

47. False. If all three lines are parallel and coincide, then the system has infinitely many solutions corresponding to all

points on the (common) line.

48. True. The two (or more) parallel lines that are distinct have no point in common. This means that there is no point

common to all the lines, and so the system has no solution.

2.2 Systems of Linear Equations: Unique Solutions

Concept Questions page 93

1. a. The two systems are equivalent to each other if they have precisely the same solutions.

b. i. Interchange row i with row j .

ii. Replace row i with c times row i .

iii. Replace row i with the sum of row i and a times row j .

2. a. The coefficient matrix is the m  n matrix made up of the coefficients of the system of m linear equations in the

n variables. The augmented matrix for the system is obtained from the matrix of coefficients by adjoining the

column of constants to it. A column in the coefficient matrix is a unit column if one of the entries in the column is

1 and all other entries are 0.

b. To pivot about an element means to transform the column containing that element into a unit column with a 1 in

the position previously occupied by that element.

3. a. It lies below any other row having nonzero entries.

b. It is a 1.

c. The leading 1 in the lower row lies to the right of the leading 1 in the upper row.
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d. They are all 0.

Exercises page 93

1.


2 3

3 1

 7

4


2.


3 7 8

1 0 3

4 3 0


5

2

7

 3.


0 1 2

2 2 8

0 3 4


5

4

0

 4.


3 2 0

1 1 2

0 2 3


0

4

5


5. 3x  2y  4

x  y  5
6. 3x  2z  4

x  y  2z  3
4x  3z  2

7. x  3y  2z  4
2x  5
3x  3y  2z  6

8. 2x  3y  z  6
4x  3y  2z  5

9. Yes. Conditions 1–4 are satisfied (see page 86 of the text).

10. Yes. Conditions 1–4 are satisfied.

11. No. Condition 3 is violated. The first nonzero entry in the second row does not lie to the right of the first nonzero

entry (1) in the first row.

12. Yes. Conditions 1–4 are satisfied.

13. Yes. Conditions 1–4 are satisfied.

14. No. Condition 2 is violated. The first nonzero entry in the third row is not a 1.

15. No. Condition 2 and consequently condition 4 are not satisfied. The first nonzero entry in the last row is not a 1 and

the column containing that entry does not have zeros elsewhere.

16. Yes. Conditions 1–4 are satisfied.

17. No. Condition 1 is violated. The first row consists entirely of zeros and it lies above row 2.

18. No. Conditions 2 and 3 are violated. Row 3 should lie above row 3, and the entry in row 3, column 4 should be a 1,

not a 4.

19.

 1 3

2 4

 4

6


R2  2R1


1 3

0 2

 4

2



20.

 2 4

3 1

 8

2


1
2 R1


1 2

3 1

 4

2


R2  3R1


1 2

0 5

 4

10



21.

1 2

6 8

 3

2


R1


1 2

6 8

 3

2


R2  6R1


1 2

0 20

 3

20


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22.


3 2

4 2

 6

5


1
4 R2


3 2

1 1
2

 6
5
4


R1  3R2


0 1

2

1 1
2

 9
4
5
4



23.


2 4 6

2 3 1

3 1 2


12

5

4

 1
2 R1


1 2 3

2 3 1

3 1 2


6

5

4

 R2  2R1
R3  3R1


1 2 3

0 1 5

0 7 7


6

7

14



24.


1 3 2

2 4 8

1 2 3


4

6

4

 1
2 R2


1 3 2

1 2 4

1 2 3


4

3

4

 R1  R2
R3  R2


0 1 2

1 2 4

0 4 7


1

3

7



25.


0 1 3

2 4 1
5 6 2


4

3

4

 R1  3R2
R3  2R2


6 11 0

2 4 1

1 2 0


5

3

10



26.


1 2 3

0 3 3

0 4 1


5

2

3

  1
3 R2


1 2 3

0 1 1

0 4 1


5

 2
3

3

 R1  2R2
R3  4R2


1 0 5

0 1 1

0 0 3


19
3

 2
3

17
3



27.


3 9

2 1

 6

4


1
3 R1


1 3

2 1

 2

4


R2  2R1


1 3

0 5

 2

0


 1

5 R2


1 3

0 1

 2

0


R1  3R2


1 0

0 1

 2

0



28.


1 2

2 3

 1

1


R2  2R1


1 2

0 1

 1

3


R2


1 2

0 1

 1

3


R1  2R2


1 0

0 1

 5

3



29.


1 3 1

3 8 3

2 3 1


3

7

10

 R2  3R1
R3  2R1


1 3 1

0 1 0

0 9 1


3

2

16

 R2


1 3 1

0 1 0

0 9 1


3

2

16

 R1  3R2
R3  9R2


1 0 1

0 1 0

0 0 1


3

2

2

 R1  R3R3


1 0 0

0 1 0

0 0 1


1

2

2



30.


0 1 3

1 2 1

1 2 0


4

7

1

 R1  R2


1 2 1

0 1 3

1 2 0


7

4

1

 R3  R1


1 2 1

0 1 3

0 4 1


7

4

6

 R1  2R2
R3  4R2


1 0 5

0 1 3

0 0 11


15

4

22

 1
11 R3


1 0 5

0 1 3

0 0 1


15

4

2

 R1  5R3
R2  3R3


1 0 0

0 1 0

0 0 1


5

2

2


31. The augmented matrix is equivalent to the system of linear equations 3x  9y  6, 2x  y  4. The ordered pair

2 0 is the solution to the system.
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32. The augmented matrix is equivalent to the system of linear equations x  2y  1, 2x  3y  1. The solution to

the system is x  5, y  3.

33. The augmented matrix is equivalent to the system of linear equations x  3y  z  3, 3x  8y  3z  7,

2x  3y  z  10. Reading off the solution from the last augmented matrix,


1 0 0

0 1 0

0 0 1


1

2

2

, which is in

row-reduced form, we have x  1, y  2, and z  2.

34. The augmented matrix is equivalent to the system of linear equations y  3z  4, x  2y  z  7, x  2y  1.

The solution to the system is x  5, y  2, z  2.

35. Using the Gauss-Jordan elimination method, we have
1 1

2 1

 3

3


R2  2R1


1 1

0 3

 3

3


1
3 R2


1 1

0 1

 3

1


R1  R2


1 0

0 1

 2

1


. The solution is 2 1.

36. Using the Gauss-Jordan elimination method, we have
1 2

2 3

 3

8


R2  2R1


1 2

0 7

 3

14


1
7 R2


1 2

0 1

 3

2


R1  2R2


1 0

0 1

 1

2


. The solution is 1 2.

37. Using the Gauss-Jordan elimination method, we have
1 2

3 4

 8

4


R2  3R1


1 2

0 10

 8

20


1
10 R2


1 2

0 1

 8

2


R1  2R2


1 0

0 1

 4

2


.

The solution is 42.

38. Using the Gauss-Jordan elimination method, we have
3 1

7 2

 1

1


1
3 R1


1 1

3

7 2

 1
3

1


R2  7R1


1 1

3

0 1
3

 1
3
4
3


3R2


1 1

3

0 1

 1
3

4


R1  1

3 R2


1 0

0 1

 1

4


.

The solution is 1 4.

39. Using the Gauss-Jordan elimination method, we have
2 3

4 1

 8

2


1
2 R1


1  3

2

4 1

 4

2


R2  4R1


1 3

2

0 7

 4

14


1
7 R2


1 3

2

0 1

 4

2


R1  3

2 R2


1 0

0 1

 1

2


.

The solution is 1 2.

40. Using the Gauss-Jordan elimination method, we have
5 3

2 1

 9

8


1
5 R1


1 3

5

2 1

 9
5

8


R2  2R1


1 3

5

0 11
5

 9
5

 22
5


5
11 R2


1 3

5

0 1

 9
5

2


R1  3

5 R2


1 0

0 1

 3

2


.

The solution is 32.
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41. Using the Gauss-Jordan elimination method, we have
6 8

2 4

 15

5


1
6 R1


1 4

3

2 4

 5
2

5


R2  2R1


1 4

3

0  20
3

 5
2

10


 3

20 R2


1 4

3

0 1

 5
2
3
2


R1  4

3 R2


1 0

0 1

 1
2
3
2


.

The solution is


1
2 

3
2


.

42. Using the Gauss-Jordan elimination method, we have
2 10

4 6

 1

11


1
2 R1


1 5

4 6

 1
2

11


R2  4R1


1 5

0 26

 1
2

13


1
26 R2


1 5

0 1

 1
2
1
2


R1  5R2


1 0

0 1

 2
1
2


. The

solution is

2 1

2


.

43. Using the Gauss-Jordan elimination method, we have
3 2

2 4

 1

2


1
3 R1


1 2

3

2 4

 1
3

2


R2  2R1


1 2

3

0 16
3

 1
3
4
3


3
16 R2


1 2

3

0 1

 1
3
1
4


R1  2

3 R2


1 0

0 1

 1
2
1
4


. The

solution is


1
2 

1
4


.

44. Using the Gauss-Jordan elimination method, we have
1 1

2

1
2 4

 7
6
2
3


R2  1

2 R1


1  1

2

0 15
4

 7
6
5
4


4
15 R2


1  1

2

0 1

 7
6
1
3


R1  1

2 R2


1 0

0 1

 4
3
1
3


. The solution is


4
3 

1
3


.

45.


2 1 2

1 3 1

3 4 1


4

3

7

 R1  R2


1 3 1

2 1 2

3 4 1


3

4

7

 R2  2R1
R3  3R1


1 3 1

0 5 0

0 5 2


3

10

16

  1
5 R2


1 3 1

0 1 0

0 5 2


3

2

16

 R1  3R2
R3  5R2


1 0 1

0 1 0

0 0 2


3

2

6

 1
2 R3


1 0 1

0 1 0

0 0 1


3

2

3

 R1  R3


1 0 0

0 1 0

0 0 1


6

2

3

.

The solution is 62 3.

46. Using the Gauss-Jordan elimination method, we have


1 1 1

2 1 1

1 1 2


0

1

2

 R2  2R1
R3  R1


1 1 1

0 3 1

0 0 3


0

1

2

  1
3 R2


1 1 1

0 1 1
3

0 0 3


0

1
3

2

 R1  R2


1 0 2

3

0 1 1
3

0 0 3


1
3

1
3

2

  1
3 R3


1 0 2

3

0 1 1
3

0 0 1


1
3

1
3

2
3

 R1  2
3 R3

R2  1
3 R3


1 0 0

0 1 0

0 0 1


7
9

1
9

2
3

.

The solution is


7
9 1

9 2
3


.
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47.


2 2 1

1 0 1

0 4 3


9

4

17

 R1  R2


1 0 1

2 2 1

0 4 3


4

9

17

 R2  2R1


1 0 1

0 2 1

0 4 3


4

1

17

 1
2 R2


1 0 1

0 1 1
2

0 4 3


4
1
2

17

 R3  4R2


1 0 1

0 1  1
2

0 0 1


4
1
2

15

 R3


1 0 1

0 1 1
2

0 0 1


4
1
2

15

 R1  R3
R2  1

2 R3


1 0 0

0 1 0

0 0 1


19

7

15

. The solution is 19715.

48.


2 3 2

3 2 2

4 1 3


10

0

1

 R1  R2


3 2 2

2 3 2

4 1 3


0

10

1

 R1  R2


1 5 4

2 3 2

4 1 3


10

10

1

 R2  2R1
R3  4R1


1 5 4

0 13 10

0 19 13


10

30

39

 1
13 R2


1 5 4

0 1 10
13

0 19 13


10

30
13

39

 R1  5R2
R3  19R2


1 0 2

13

0 1  10
13

0 0 21
13


20
13
30
13

 63
13

 13
21 R3


1 0 2

13

0 1  10
13

0 0 1


20
13
30
13

3

 R1  2
13 R3

R2  10
13 R3


1 0 0

0 1 0

0 0 1


2

0

3

. The solution is 2 03.

49.


0 1 1

4 3 2

3 2 1


2

16

11

 R1  R2


4 3 2

0 1 1

3 2 1


16

2

11

 R1  R3


1 5 1

0 1 1

3 2 1


5

2

11

 R2
R3  3R1


1 5 1

0 1 1

0 17 2


5

2

4

 R1  5R2
R3  17R2


1 0 4

0 1 1

0 0 15


5

2

30

 1
15 R3


1 0 4

0 1 1

0 0 1


5

2

2

 R1  4R3
R2  R3


1 0 0

0 1 0

0 0 1


3

0

2

. The solution is 3 0 2.

50.


2 4 6

1 2 3

3 4 4


38

7

19

 R1  R2


1 2 3

2 4 6

3 4 4


7

38

19

 R2  2R1
R3  3R1


1 2 3

0 0 12

0 10 5


7

24

40

 R2  R3


1 2 3

0 10 5

0 0 12


7

40

24

  1
10 R2


1 2 3

0 1 1
2

0 0 12


7

4

24

 R1  2R2


1 0 2

0 1 1
2

0 0 12


1

4

24

  1
12 R3


1 0 2

0 1 1
2

0 0 1


1

4

2

 R1  2R3
R2  1

2 R3


1 0 0

0 1 0

0 0 1


3

5

2

. The solution is 3 52.
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51. Using the Gauss-Jordan elimination method, we have


1 2 1

2 1 3

1 3 3


6

3

10

 R2  2R1
R3  R1


1 2 1

0 5 5

0 1 2


6

15

4

 1
5 R2


1 2 1

0 1 1

0 1 2


6

3

4

 R1  2R2
R3  R2


1 0 1

0 1 1

0 0 1


0

3

1

 R1  R3
R2  R3


1 0 0

0 1 0

0 0 1


1

2

1

. The solution is 12 1.

52. Using the Gauss-Jordan elimination method, we have
2 3 6

1 2 3

3 1 0


11

9

7

 R1  R2


1 2 3

2 3 6

3 1 0


9

11

7

 R2  2R1
R3  3R1


1 2 3

0 7 12

0 7 9


9

29

20

 1
7 R2


1 2 3

0 1 12
7

0 7 9


9

 29
7

20

 R1  2R2
R3  7R2


1 0  3

7

0 1  12
7

0 0 3


5
7

29
7

9

 1
3 R3


1 0  3

7

0 1  12
7

0 0 1


5
7

29
7

3

 R1  3
7 R3

R2  12
7 R3


1 0 0

0 1 0

0 0 1


2

1

3

.

The solution is 2 1 3.

53. Using the Gauss-Jordan elimination method, we have
2 0 3

3 2 1

1 1 4


1

9

4

 R1  R3


1 1 4

3 2 1

2 0 3


4

9

1

 R2  3R1
R3  2R1


1 1 4

0 5 11

0 2 5


4

3

9

  1
5 R2


1 1 4

0 1 11
5

0 2 5


4
3
5

9

 R1  R2
R3  2R2


1 0 9

5

0 1 11
5

0 0  3
5


17
5
3
5

 39
5

  5
3 R3


1 0 9

5

0 1 11
5

0 0 1


17
5
3
5

13

 R1  9
5 R3

R2  11
5 R3


1 0 0

0 1 0

0 0 1


20

28

13

.

The solution is 2028 13.

54. Using the Gauss-Jordan elimination method, we have
2 1 3

1 2 1

1 5 2


4

1

3

 R1  R2


1 2 1

2 1 3

1 5 2


1

4

3

 R2  2R1
R3  R1


1 2 1

0 3 1

0 3 1


1

2

2

 1
3 R2


1 2 1

0 1 1
3

0 3 1


1

2
3

2

 R1  2R2
R3  3R2


1 0 5

3

0 1 1
3

0 0 2


 7

3

 2
3

4

 1
2 R3


1 0 5

3

0 1 1
3

0 0 1


 7

3

 2
3

2

 R1 5
3 R3

R2  1
3 R3


1 0 0

0 1 0

0 0 1


1

0

2

. The solution is 1 02.

55. Using the Gauss-Jordan elimination method, we have
1 1 3

1 1 1

2 1 1


14

6

4

 R2  R1
R3  2R1


1 1 3

0 2 2

0 3 7


14

8

24

 1
2 R2


1 1 3

0 1 1

0 3 7


14

4

24

 R1  R2
R3  3R2


1 0 2

0 1 1

0 0 4


10

4

12

 1
4 R3


1 0 2

0 1 1

0 0 1


10

4

3

 R1  2R3
R2  R3


1 0 0

0 1 0

0 0 1


4

1

3

. The solution is 41 3.
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56. Using the Gauss-Jordan elimination method, we have
2 1 1

3 2 1

1 2 2


0

7

5

 R1  R3


1 2 2

3 2 1

2 1 1


5

7

0

 R2  3R1
R3  2R1


1 2 2

0 4 5

0 5 5


5

8

10

  1
4 R2


1 2 2

0 1 5
4

0 5 5


5

2

10

 R1  2R2
R3  5R2


1 0 1

2

0 1 5
4

0 0 5
4


1

2

0

 4
5 R3


1 0  1

2

0 1 5
4

0 0 1


1

2

0

 R1  1
2 R3

R2  5
4 R3


1 0 0

0 1 0

0 0 1


1

2

0

.

The solution is 1 2 0.

57. Using the Gauss-Jordan elimination method, we have
4 5

3 k

 3

10


R1  R2


1 5 k

3 k

 7

10


R2  3R1


1 5 k

0 4k  15

 7

31


.

In order for the system to have a unique solution we must have 4k15  0, so k  15
4 . With this condition, we have

1 5 k

0 4k  15

 7

31

 
1

4k15


R2




1 5 k

0 4k  15

 7
31

4k15


R15kR2


1 0

0 1

 3k50
4k15

31
4k15



Thus, the required solution is x  3k  50

4k  15
, y  31

4k  15
.

58. Using the Gauss-Jordan elimination method, we have
1 3 1

3 2 2

4 3 k


8

5

0

 R2  3R1
R3  4R1


1 3 1

0 7 5

0 15 k  4


8

19

32

  1
7 R2


1 3 1

0 1 5
7

0 15 k  4


8
19
7

32

 R1  3R2
R3  15R2


1 0 8

7

0 1 5
7

0 0 7k47
7


 1

7
19
7

61
7


The system has a unique solution if

7k  47

7
 0, that is, 7k  47  0, or k  47

7 . In this case, we have
1 0 8

7

0 1 5
7

0 0 7k47
7


1

7
19
7
61
7

 
1

7k47


R3




1 0  8

7

0 1 5
7

0 0 1


 1

7
19
7

61
7k47

 R1  8
7 R3

R2  5
7 R3


1 0 0

0 1 0

0 0 1


 7k441

77k47
133k588
77k47

61
7k47

.

Thus, provided k  47
7 , the unique solution is x   7k  441

7 7k  47
  k  63

7k  47
, y  133k  588

7 7k  47
 19k  84

7k  47
,

z  61

7k  47
.
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59. We wish to solve the system of equations

x  y  500

42x  30y  18,600

where x is the number of acres of corn planted and y is the number of acres of wheat planted. Using the

Gauss-Jordan elimination method, we find
1 1

42 30

 500

18,600


R2  42R1


1 1

0 12

 500

2400


 1

12 R2


1 1

0 1

 500

200


R1  R2


1 0

0 1

 300

200


.

The solution to this system of equations is x  300, y  200. We conclude that Jacob should plant 300 acres of

corn and 200 acres of wheat.

60. We wish to solve the system of equations

x  y  2000

003x  004y  72

where x is the amount invested at 3% and y is the amount invested at 4%. Using the Gauss-Jordan elimination

method, we find


1 1

003 004

 2000

72


R2  003R1


1 1

0 001

 2000

12


100R2


1 1

0 1

 2000

1200


R1  R2


1 0

0 1

 800

1200


.

The solution to this system of equations is x  800, y  1200. We conclude that Michael should invest $800 at 3%

per year and $1200 at 4% per year.

61. Let x denote the number of pounds of $8lb coffee and y the number of pounds of $9lb coffee. Then we wish to

solve the system

x  y  100

8x  9y  860

Using the Gauss-Jordan elimination method, we have


1 1

8 9

 100

860


R2  8R1


1 1

0 1

 100

60


R1  R2


1 0

0 1

 40

60


. Therefore, 40 pounds of $8lb coffee and 60 pounds of $9lb coffee should be used in the

100-lb. mixture.

62. Let x be the number of dollars invested in bonds yielding 4% and y the number of dollars invested in the bonds

yielding 5%. Then the solution to the problem can be found by solving the system of equations

x  y  30,000

004x  005y  1320

Using the Gauss-Jordan elimination method, we have
1 1

004 005

 30,000

1320


R2  004R1


1 1

0 001

 30,000

120


100R2


1 1

0 1

 30,000

12,000


R1  R2


1 0

0 1

 18,000

12,000


.

Thus, she has $18,000 invested in bonds yielding 4% and $12,000 invested in bonds yielding 5%.
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63. Let x and y denote the numbers of children and adults respectively who rode the bus during the morning shift.

Then the solution to the problem can be found by solving the system of equations

x  y  1000

05x  15y  1300

Using the Gauss-Jordan elimination method, we have


1 1

05 15

 1000

1300


R2  05R1


1 1

0 1

 1000

800


R1  R2


1 0

0 1

 200

800


. We conclude that 800 adults and 200 children rode the bus during the morning shift.

64. Let x , y, and z denote the numbers of one-bedroom units, two-bedroom townhouses, and three-bedroom

townhouses, respectively. Then we are required to solve the system

x  y  z  192

x  y  z  0

x  3z  0

Using the Gauss-Jordan elimination method, we find
1 1 1

1 1 1

1 0 3


192

0

0

 R2  R1
R3  R1


1 1 1

0 2 2

0 1 4


192

192

192

  1
2 R2


1 1 1

0 1 1

0 1 4


192

96

192

 R1  R2
R3  R2


1 0 0

0 1 1

0 0 3


96

96

96

  1
3 R3


1 0 0

0 1 1

0 0 1


96

96

32

 R2  R3


1 0 0

0 1 0

0 0 1


96

64

32

.

Therefore, 96 one-bedroom, 64 two-bedroom, and 32 three-bedroom units should be built.

65. Let x and y denote the costs of the ball and the bat, respectively. Then x  y  110 and y  x  100. Using the

Gauss-Jordan elimination method, we have
1 1

1 1

 110

100


R2  R1


1 1

0 2

 110

210


1
2 R2


1 1

0 1

 110

105


R1  R2


1 0

0 1

 5

105


.

Thus, x  5 and y  105, so the ball costs $5 and the bat costs $105.

66. Let x and y denote the amounts of money invested in projects A and B, respectively. Then x  y  70,000 and

x  y  20,000. Using the Gauss-Jordan elimination method, we have
1 1

1 1

 70,000

20,000


R2  R1


1 1

0 2

 70,000

50,000


 1

2 R2


1 1

0 1

 70,000

25,000


R1  R2


1 0

0 1

 45,000

25,000


.

Thus, x  45,000 and y  25,000, so Josh invested $45,000 in project A and $25,000 in project B.
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67. Let x , y, and z, denote the amounts of money he should invest in a savings account, mutual funds, and bonds,

respectively. Then we are required to solve the system

006x  008y  012z  21,600

2x  z  0

008y  012z  0

Using the Gauss-Jordan elimination method, we find
006 008 012

2 0 1

0 008 012


21,600

0

0

 1
006 R1

1
008 R3


1 4

3 2

2 0 1

0 1 3
2


360,000

0

0

 R2  2R1


1 4

3 2

0  8
3 5

0 1  3
2


360,000

720,000

0

  3
8 R2


1 4

3 2

0 1 15
8

0 1  3
2


360,000

270,000

0

 R1  4
3 R2

R3  R2


1 0  1

2

0 1 15
8

0 0  27
8


0

270,000

270,000

  8
27 R3


1 0  1

2

0 1 15
8

0 0 1


0

270,000

80,000

 R1  1
2 R3

R2  15
8 R3


1 0 0

0 1 0

0 0 1


40,000

120,000

80,000

.

Therefore, Sid should invest $40,000 in a savings account, $120,000 in mutual funds, and $80,000 in bonds.

68. Refer to Exercise 2.1.32 on page 80 of the text. We obtain the following augmented matrices:
1 1 1

15 10 6

1 1 1


200,000

2,000,000

0

 R2  15R1
R3  R1


1 1 1

0 5 9

0 0 2


200,000

1,000,000

200,000

  1
5 R2


1 1 1

0 1 9
5

0 0 2


200,000

200,000

200,000

 R1  R2
 1

2 R3


1 0  4

5

0 1 9
5

0 0 1


0

200,000

100,000

 R1  4
5 R3

R2  9
5 R3


1 0 0

0 1 0

0 0 1


80,000

20,000

100,000

.

We see that x  80,000, y  20,000, and z  100,000. Therefore, they should invest $80,000 in high-risk, $20,000

in medium-risk, and $100,000 in low-risk stocks.

69. We need to solve the system

x  y  z  100
x  y  67
x  z  17

Using the Gauss-Jordan elimination method, we have
1 1 1

1 1 0

1 0 1


100

67

17

 R2  R1
R3  R1


1 1 1

0 0 1

0 1 2


100

33

83

 R2  R3


1 1 1

0 1 2

0 0 1


100

83

33

 R2R3


1 1 1

0 1 2

0 0 1


100

83

33

 R1  R2
R2  2R3


1 0 1

0 1 0

0 0 1


17

17

33

 R1  R3


1 0 0

0 1 0

0 0 1


50

17

33

.

Thus, x  50, y  17, and z  33.
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70. Let x , y, and z denote the numbers of respondents who answered “yes,” “no,” and “not sure,” respectively. Then we

have
x  y  z  1000

y  z  370
x  y  340

Using the Gauss-Jordan elimination method, we have
1 1 1

0 1 1

1 1 0


1000

370

340

 R3  R1


1 1 1

0 1 1

0 2 1


1000

370

660

 R1  R2
R3  2R2


1 0 0

0 1 1

0 0 1


630

370

80

 R2  R3


1 0 0

0 1 0

0 0 1


630

290

80

.

Thus, x  630, y  290, and z  80. We conclude that 63% said yes, 29% said no, and 8% said they were not sure.

71. Refer to Exercise 2.1.35 on page 81 of the text. We obtain the following augmented matrices:
18 20 24

4 4 3

5 4 6


26,400

4900

6200

 R1  R3


5 4 6

4 4 3

18 20 24


6200

4900

26,400

 R1  R2


1 0 3

4 4 3

18 20 24


1300

4900

26,400

 R2  4R1
R3  18R1


1 0 3

0 4 9

0 20 30


1300

300

3000

 1
4 R2


1 0 3

0 1  9
4

0 20 30


1300

75

3000

 R3  20R2


1 0 3

0 1 9
4

0 0 15


1300

75

4500

 1
15 R3


1 0 3

0 1  9
4

0 0 1


1300

75

300

 R1  3R3
R2  9

4 R3


1 0 0

0 1 0

0 0 1


400

600

300

. We see that x  400, y  600, and z  300. Therefore,

Lawnco should produce 400, 600, and 300 bags of grades A, B, and C fertilizer, respectively.

72. Let x , y, and z denote the numbers of tickets sold to children, students and adults, respectively. Then the solution to

the problem can be found by solving the system

x  y  z  900
x  y  2z  0

4x  6y  8z  5600
Using the Gauss-Jordan elimination method, we have

1 1 1

1 1 2

4 6 8


900

0

5600

 R2  R1
R3  4R1


1 1 1

0 0 3

0 2 4


900

900

2000

 1
2 R3


1 1 1

0 0 3

0 1 2


900

900

1000

 R2  R3


1 1 1

0 1 2

0 0 3


900

1000

900

 R1  R2


1 0 1

0 1 2

0 0 3


100

1000

900

  1
3 R3


1 0 1

0 1 2

0 0 1


100

1000

300

 R1  R3
R2  2R3


1 0 0

0 1 0

0 0 1


200

400

300

.

We conclude that 200 children attended the show.

73. Let x , y, and z denote the numbers of compact, intermediate, and full-size cars, respectively, to be purchased. Then

the problem can be solved by solving the system

18,000x  27,000y  36,000z  2,250,000
x  2y  0
x  y  z  100
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Using the Gauss-Jordan elimination method, we have
18,000 27,000 36,000

1 2 0

1 1 1


2,250,000

0

100

 R1  R3


1 1 1

1 2 0

18,000 27,000 36,000


100

0

2,250,000

 R2  R1
R3  18,000R1


1 1 1

0 3 1

0 9000 18,000


100

100

450,000

  1
3 R2


1 1 1

0 1 1
3

0 9000 18,000


100
100
3

450,000

 R1  R2
R3  9000R2


1 0 2

3

0 1 1
3

0 0 15,000


200

3
100

3

150,000

 1
15,000 R3


1 0 2

3

0 1 1
3

0 0 1


200
3

100
3

10

 R1  2
3 R3

R2  1
3 R3


1 0 0

0 1 0

0 0 1


60

30

10

.

We conclude that 60 compact cars, 30 intermediate cars, and 10 full-size cars will be purchased.

74. Let x , y, and z denote the amounts of money invested in high-risk stocks, medium- risk stocks, and low-risk stocks,

respectively. Then the problem can be solved by solving the system

x  y  z  200,000

2x  2y  z  0

6x  y  3z  0

Using the Gauss-Jordan elimination method, we have
1 1 1

2 2 1

6 1 3


200,000

0

0

 R2  2R1
R3  6R1


1 1 1

0 0 3

0 5 9


200,000

400,000

1,200,000

 R2R3


1 1 1

0 5 9

0 0 3


200,000

1,200,000

400,000

  1
5 R2


1 1 1

0 1 9
5

0 0 3


200,000

240,000

400,000

 R1  R2


1 0 4

5

0 1 9
5

0 0 3


40,000

240,000

400,000

  1
3 R3


1 0 4

5

0 1 9
5

0 0 1


40,000

240,000
400,000

3

 R1  4
5 R3

R2  9
5 R3


1 0 0

0 1 0

0 0 1


200,000

3

0
400,000

3

.

We conclude that the investment club should invest $66,66667 in high-risk stocks, nothing in medium-risk stocks,

and $133,33333 in low-risk stocks.

75. Let x , y, and z, represent the numbers of ounces of Foods I, II, III used in the meal, respectively. Then the problem

reduces to solving the following system of linear equations:

10x  6y  8z  100

10x  12y  6z  100

5x  4y  12z  100
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Using the Gauss-Jordan elimination method, we obtain
10 6 8

10 12 6

5 4 12


100

100

100

 1
10 R1


1 3

5
4
5

10 12 6

5 4 12


10

100

100

 R2  10R1
R3  5R1


1 3

5
4
5

0 6 2

0 1 8


10

0

50

 1
6 R2


1 3

5
4
5

0 1  1
3

0 1 8


10

0

50

 R1  3
5 R2

R3  R2


1 0 1

0 1  1
3

0 0 25
3


10

0

50

 3
25 R3


1 0 1

0 1 1
3

0 0 1


10

0

6

 R1  R3
R2  1

3 R3


1 0 0

0 1 0

0 0 1


4

2

6

.

We conclude that 4 ounces of Food I, 2 ounces of Food II, and 6 ounces of Food III should be used to prepare the

meal.

76. Let x , y, and z denote the amounts of money invested in stocks, bonds, and a money market account, respectively.

Then the problem can be solved by solving the system

x  y  z  100,000

12x  8y  4z  1,000,000

20x  10y  100z  0
Using the Gauss-Jordan elimination method, we have

1 1 1

12 8 4

20 10 100


100,000

1,000,000

0

 R2  12R1
R3  20R1


1 1 1

0 4 8

0 10 120


100,000

200,000

2,000,000

  1
4 R2


1 1 1

0 1 2

0 10 120


100,000

50,000

2,000,000

 R1  R2
R3  10R2


1 0 1

0 1 2

0 0 100


50,000

50,000

1,500,000

  1
100 R3


1 0 1

0 1 2

0 0 1


50,000

50,000

15,000

 R1  R3
R2  2R3


1 0 0

0 1 0

0 0 1


65,000

20,000

15,000

.

We conclude that the Garcias should invest $65,000 in stocks,$20,000 in bonds, and $15,000 in a money market

account.

77. Let x , y, and z denote the numbers of front orchestra, rear orchestra, and front balcony seats sold for this

performance. Then we are required to solve the system

x  y  z  1000

80x  60y  50z  62,800

x  y  2z  400
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Using the Gauss-Jordan elimination method, we find
1 1 1

80 60 50

1 1 2


1000

62,800

400

 R2  80R1
R3  R1


1 1 1

0 20 30

0 0 3


1000

17,200

600

  1
20 R2

 1
3 R3


1 1 1

0 1 3
2

0 0 1


1000

860

200

 R1  R2


1 0  1

2

0 1 3
2

0 0 1


140

860

200

 R1  1
2 R3

R2  3
2 R3


1 0 0

0 1 0

0 0 1


240

560

200

.

We conclude that tickets for 240 front orchestra seats, 560 rear orchestra seats, and 200 front balcony seats were

sold.

78. Let x , y, and z denote the numbers of dozens of sleeveless, short-sleeve, and long-sleeve blouses produced per day.

Then we want to solve the system

9x  12y  15z  4800

22x  24y  28z  9600

6x  8y  8z  2880

Using the Gauss-Jordan elimination method, we find
9 12 15

22 24 28

6 8 8


4800

9600

2880

 1
9 R1


1 4

3
5
3

22 24 28

6 8 8


1600

3

9600

2880

 R2  22R1
R3  6R1


1 4

3
5
3

0  16
3  26

3

0 0 2


1600

3

 6400
3

320

  3
16 R2


1 4

3
5
3

0 1 13
8

0 0 2


1600

3

400

320

 R1  4
3 R2

 1
2 R3


1 0 1

2

0 1 13
8

0 0 1


0

400

160

 R1  1
2 R3

R2  13
8 R3


1 0 0

0 1 0

0 0 1


80

140

160

.

Therefore, the manufacturer should produce 80 dozen sleeveless, 140 dozen short-sleeve, and 160 dozen long-sleeve

blouses per day.

79. Let x , y, and z denote the number of days spent in London, Paris, and Rome, respectively. We have

280x  330y  260z  4060, 130x  140y  110z  1800, and x  y  z  0 (since x  y  z). Using the

Gauss-Jordan elimination method to solve the system, we have
280 330 260

130 140 110

1 1 1


4060

1800

0

 R1  R3


1 1 1

130 140 110

280 330 260


0

1800

4060

 R2  130R1
R3  280R1


1 1 1

0 270 240

0 610 540


0

1800

4060

 1
270 R2


1 1 1

0 1 8
9

0 610 540


0

20
3

4060

 R1  R2
R3  610R2


1 0  1

9

0 1 8
9

0 0  20
9


20
3
20
3

 20
3

  9
20 R3


1 0  3

23

0 1 20
23

0 0 1


152
23
152
23

3

 R1  3
23 R3

R2  20
23 R1


1 0 0

0 1 0

0 0 1


7

4

3

.

The solution is x  7, y  4, and z  3. Therefore, he spent 7 days in London, 4 days in Paris, and 3 days in Rome.
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80. Let x , y, z, and  denote the number of days they spent in Boston, New York, Philadelphia, and Washington,

respectively. The given information leads to the system of equations

x  y  z    14

240x  400y  160z  200  4040

y  x 

y  3z

or

x  y  z    14

x  y    0

y  3z  0

240x  400y  160z  200  4040

We obtain the following augmented matrices:
1 1 1 1

1 1 0 1

0 1 3 0

240 400 160 200



14

0

0

4040


R2  R1

R3  240R1


1 1 1 1

0 2 1 0

0 1 3 0

0 160 80 40



14

14

0

680

 R2  R3


1 1 1 1

0 1 3 0

0 2 1 0

0 160 80 40



14

0

14

680


R1  R2
R3  2R2

R4  160R2


1 0 4 1

0 1 3 0

0 0 7 0

0 0 400 40



14

0

14

680

  1
7 R3


1 0 4 1

0 1 3 0

0 0 1 0

0 0 400 40



14

0

2

680


R1  4R3
R2  3R3

R4  400R3


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 40



6

6

2

120

  1
40 R4


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1



6

6

2

3

 R1  R4


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



3

6

2

3

.

We see that x  3, y  6, z  2, and   3, and we conclude that they spent 3 days each in Boston and

Washington, 6 days in New York, and 2 days in Philadelphia.

81. False. The constant cannot be zero. The system


2x  y  1

3x  y  2
is not equivalent to


2x  y  1

0 3x  y  0 2
or


2x  y  1

0  0

82. True. The row with the given form says that 0x  0y  0z  a, or 0  a. But if a  0, we have a contradiction.

Technology Exercises page 99

1. 3 11 2 2. 1 021 3. 5 434

4. 2563312 167 5. 11 2 0 3 6. 1208 36 47 21

2.3 Systems of Linear Equations: Underdetermined and Overdetermined Systems

Concept Questions page 106

1. There may be no solution, a unique solution, or infinitely many solutions.

2. There may be no solution or infinitely many solutions.

3. No
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Exercises page 106

1. a. The system has one solution. b. The solution is 31 2.

2. a. The system has one solution. b. The solution is 32 1.

3. a. The system has one solution. b. The solution is 2 5.

4. a. The system has one solution. b. The solution is 3 1.

5. a. The system has no solution. The last row contains all zeros to the left of the vertical line and a nonzero number

(1) to the right.

6. a. The system has no solution. The last row contains all zeros to the left of the vertical line and a nonzero number

(1) to the right.

7. a. The system has infinitely many solutions.

b. Letting x3  t , we see that the solutions are given by 4 t2 t, where t is a parameter.

8. a. The system has infinitely many solutions.

b. Letting x3  t , we see that the solutions are given by 31 t t 2, where t is a parameter.

9. a. The system has no solution.

b. The last row contains all zeros to the left of the vertical line and a nonzero number (1) to its right.

10. a. The system has no solution.

b. The last row contains all zeros to the left of the vertical line and a nonzero number (1) to its right.

11. a. The system has infinitely many solutions.

b. Letting x4  t , we see that the solutions are given by 41 3 t t, where t is a parameter.

12. a. The system has infinitely many solutions.

b. Letting x1  s and x4  t , we see that the solutions are given by s 3 t 4 2t t, where s and t are

parameters.

13. a. The system has infinitely many solutions.

b. Letting x3  s and x4  t , the solutions are given by 2 3s 1 s s t, where s and t are parameters.

14. a. The system has infinitely many solutions.

b. Letting x3  s and x4  t , we see that the solutions are given by 4 3s  t 2 2s  3t s t, where s and t

are parameters.
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15. Using the Gauss-Jordan elimination method, we have
2 1

1 2

2 3


3

4

7

 R1  R2


1 2

2 1

2 3


4

3

7

 R2  2R1
R3  2R1


1 2

0 5

0 1


4

5

1

  1
5 R2


1 2

0 1

0 1


4

1

1

 R1  2R2
R3  R2


1 0

0 1

0 0


2

1

0

.

The solution is 2 1.

16. Using the Gauss-Jordan elimination method, we have
1 2

2 3

1 4


3

8

9

 R2  2R1
R3  R1


1 2

0 7

0 6


3

14

12

  1
7 R2


1 2

0 1

0 6


3

2

12

 R1  2R2
R3  6R2


1 0

0 1

0 0


1

2

0

.

We conclude that the solution is 1 2.

17. Using the Gauss-Jordan elimination method, we have
3 2

2 1

1 2


3

3

5

 R1  R3


1 2

2 1

3 2


5

3

3

 R2  2R1
R3  3R1


1 2

0 5

0 4


5

13

12

 1
5 R2


1 2

0 1

0 4


5

13
5

12

 R1  2R2
R3  4R2


1 0

0 1

0 0


1
5
13
5
8
5

.

Since the last row implies the 0  8
5 , we conclude that the system of equations is inconsistent and has no solution.

18. Using the Gauss-Jordan elimination method, we have
2 3

1 3

1 1


2

2

3

 R1  R2


1 3

2 3

1 1


2

2

3

 R2  2R1
R3  R1


1 3

0 3

0 4


2

6

5

  1
3 R2


1 3

0 1

0 4


2

2

5

 R1  3R2
R3  4R2


1 0

0 1

0 0


4

2

3

.

The last row implies that 0  3, which is impossible. We conclude that the system of equations is inconsistent and

has no solution.

19.


3 2

1 3

2 4


5

4

6

 R1  R2


1 3

3 2

2 4


4

5

6

 R1


1 3

3 2

2 4


4

5

6

 R2  3R1
R3  2R1


1 3

0 7

0 2


4

7

2

 1
7 R2


1 3

0 1

0 2


4

1

2

 R1  3R2
R3  2R2


1 0

0 1

0 0


1

1

0

. We conclude that the solution is 11.

20.


4 6

3 2

1 3


8

7

5

 R1  R3


1 3

3 2

4 6


5

7

8

 R2  3R1
R3  4R1


1 3

0 11

0 6


5

22

12

  1
11 R2


1 3

0 1

0 6


5

2

12

 R1  3R2
R3  6R2


1 0

0 1

0 0


1

2

0

. We conclude that the solution is 1 2.
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21.


1 2

7 14

3 6


2

14

6

 R2  7R1
R3  3R1


1 2

0 0

0 0


2

0

0

.

We conclude that the infinitely many solutions are given by 2t  2 t, where t is a parameter.

22.


3 1 2

1 1 2

5 2 4


5

1

12

 1
3 R1


1 1

3
2
3

1 1 2

5 2 4


5
3

1

12

 R2  R1
R3  5R1


1  1

3
2
3

0  2
3

4
3

0  1
3

2
3


5
3

 2
3

11
3

  3
2 R2


1 1

3
2
3

0 1 2

0 1
3

2
3


5
3

1
11
3

 R1  1
3 R2

R3  1
3 R2


1 0 0

0 1 2

0 0 0


2

1

4

.

The last row of the augmented matrix says that 0  4, a contradiction. We conclude that the system has no solution.

23.


1 2 1

2 3 1

2 4 2


2

1

4

 R2  2R1
R3  2R1


1 2 1

0 1 1

0 0 0


2

3

0

 R1  2R2


1 0 1

0 1 1

0 0 0


4

3

0

. Let x3  t and we find that

x1  4 t and x2  3 t . The infinitely many solutions are given by 4 t3 t t.

24.


0 3 2

2 1 3

2 2 1


4

3

7

 R1  R2


2 1 3

0 3 2

2 2 1


3

4

7

 1
2 R1


1 1

2 3
2

0 3 2

2 2 1


3
2

4

7

 R3  2R1


1 1

2 3
2

0 3 2

0 3 2


3
2

4

4

 1
3 R2


1  1

2 3
2

0 1 2
3

0 3 2


3
2
4
3

4

 R1  1
2 R2

R3  3R2


1 0  7

6

0 1 2
3

0 0 0


13
6
4
3

0

.

Letting z  t , we see that the infinitely many solutions are given by


13
6  7t

6 
4
3  2t

3  t


.

25.


3 2

3
2 1

6 4


4

2

8

 1
3 R1


1 2

3

3
2 1

6 4


4
3

2

8

 R2  3
2 R1

R3  6R1


1 2

3

0 0

0 0


4
3

0

0

.

We conclude that the infinitely many solutions are given by


4
3  2

3 t t


, where t is a parameter.

26.


2 1 1

3 3
2

3
2

6 3 3


4

6

12

 1
2 R1


1  1

2
1
2

3  3
2

3
2

6 3 3


2

6

12

 R2  3R1
R3  6R1


1 1

2
1
2

0 0 0

0 0 0


2

0

0

.

We conclude that the infinitely many solutions are given by

2 1

2 s  1
2 t s t


where s and t are parameters.
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27.


1 1 2

2 1 3

1 2 5


3

7

0

 R2  2R1
R3  R1


1 1 2

0 3 7

0 3 7


3

13

3

  1
3 R2


1 1 2

0 1  7
3

0 3 7


3

 13
3

3

 R1  R2
R3  3R2


1 0 1

3

0 1  7
3

0 0 0


4
3

13
3

10

.

The last row implies that 0  10, which is impossible. We conclude that the system of equations is inconsistent

and has no solution.

28.


2 6 5 0

1 3 1 7

3 9 1 13


5

1

1

 1
2 R1


1 3 5

2 0

1 3 1 7

3 9 1 13


5
2

1

1

 R2  R1
R3  3R1


1 3 5

2 0

0 0 7
2 7

0 0 13
2 13


5
2

7
2

13
2

 2
7 R2


1 3  5

2 0

0 0 1 2

0 0 13
2 13


5
2

1

13
2

 R1  5
2 R2

R3  13
2 R2


1 3 0 5

0 0 1 2

0 0 0 0


0

1

0


Let x2  s and x4  t . Then there are infinitely many solutions given by 3s  5t s1 2t t, where s and t

are parameters.

29.


1 2 3

2 3 1

1 2 3


4

2

6

 R2  2R1
R3  R1


1 2 3

0 7 7

0 4 6


4

6

10

 1
7 R2


1 2 3

0 1 1

0 4 6


4

6
7

10

 R1  2R2
R3  4R2


1 0 1

0 1 1

0 0 2


16
7

6
7

46
7

  1
2 R3


1 0 1

0 1 1

0 0 1


16
7

6
7

23
7

 R1  R3
R2  R3


1 0 0

0 1 0

0 0 1


1

17
7

23
7

.

We conclude that the solution is

1 17

7 
23
7


.

30.


1 2 1

2 1 2

1 3 3


3

2

5

 R2  2R1
R3  R1


1 2 1

0 5 4

0 5 4


3

8

8

 1
5 R2


1 2 1

0 1 4
5

0 5 4


3

8
5

8

 R1  2R2
R3  5R2


1 0 3

5

0 1 4
5

0 0 0


1
5
8
5

0

.

We conclude that the infinitely many solutions to this system are


1
5  3

5 t 8
5  4

5 t t


.

31.


4 1 1

8 2 2

 4

8


1
4 R1


1 1

4  1
4

8 2 2

 1

8


R2  8R1


1 1

4 1
4

0 0 0

 1

0


.

We conclude that the infinitely many solutions are given by


1 1
4 s  1

4 t s t


, where s and t are parameters.

32.


1 2 4

1 1 2

 2

1


R2  R1


1 2 4

0 1 2

 2

1


R2


1 2 4

0 1 2

 2

1


R1  2R2


1 0 0

0 1 2

 0

1


.

We conclude that the infinitely many solutions are given by 0 1 2t t, where t is a parameter.
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33.


2 1 3

1 1 2

5 2 3


1

1

6

 R1  R2


1 1 2

2 1 3

5 2 3


1

1

6

 R2  2R1
R3  5R1


1 1 2

0 3 7

0 3 7


1

1

1

 1
3 R2


1 1 2

0 1 7
3

0 3 7


1

 1
3

1

 R1  R2
R3  3R2


1 0  1

3

0 1  7
3

0 0 0


2
3

 1
3

2

.

The last row implies that 0  2, which is impossible. We conclude that the system of equations is inconsistent and

has no solution.

34.


3 9 6

1 3 2

2 6 4


12

4

8

 R1  R2


1 3 2

3 9 6

2 6 4


4

12

8

 R2  3R1
R3  2R1


1 3 2

0 0 0

0 0 0


4

0

16

.

The last row implies that 0  16, which is impossible. We conclude that the system of equations is inconsistent and

has no solution.

35.


1 2 1

2 1 1

1 3 2

1 3 1



4

7

7

9


R2  2R1
R3  R1
R4R1


1 2 1

0 3 3

0 1 3

0 5 2



4

15

11

13

  1
3 R2


1 2 1

0 1 1

0 1 3

0 5 2



4

5

11

13


R1  2R2
R3  R2
R45R2


1 0 1

0 1 1

0 0 4

0 0 3



6

5

16

12


1
4 R3


1 0 1

0 1 1

0 0 1

0 0 3



6

5

4

12


R1  R3
R2  R3
R4  3R3


1 0 0

0 1 0

0 0 1

0 0 0



2

1

4

0

.

We conclude that the solution of the system is 21 4.

36.


3 2 1

1 3 4

2 3 5

1 8 9



4

3

7

10

 R1  R2


1 3 4

3 2 1

2 3 5

1 8 9



3

4

7

10


R2  3R1
R3  2R1
R4  R1


1 3 4

0 11 13

0 9 13

0 11 13



3

13

13

13

  1
11 R2


1 3 4

0 1 13
11

0 9 13

0 11 13



3

13
11

13

13


R1  3R2
R3  9R2
R4  11R2


1 0  5

11

0 1  13
11

0 0 26
11

0 0 0



6
11

 13
11
26
11

0


11
26 R3


1 0  5

11

0 1  13
11

0 0 1

0 0 0



6
11

 13
11

1

0


R1  5

11 R3
R2  13

11 R3


1 0 0

0 1 0

0 0 1

0 0 0



1

0

1

0

.

We conclude that the solution of the system is 1 0 1.

37. Let x , y, and z represent the numbers of compact, mid-sized, and full-size cars, respectively, to be purchased. Then

the problem can be solved by solving the system

x  y  z  60

18,000x  28,800y  39,600z  1,512,000
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Using the Gauss-Jordan elimination method, we have
1 1 1

18,000 28,800 39,600

 60

1,512,000


R2  18,000R1


1 1 1

0 1080 21,600

 60

432,000


1

1080 R2
1 1 1

0 1 2

 60

40


R1  R2


1 0 1

0 1 2

 20

40


. We conclude that the solution is 20 z 40 2z z. Letting z  5,

we see that one possible solution is 25 30 5; that is Hartman should buy 25 compact, 30 mid-size, and 5 full-size

cars. Letting z  10, we see that another possible solution is 30 20 10; that is, 30 compact, 20 mid-size, and

10 full-size cars.

38. Let x , y, and z denote the numbers of ounces of Foods I, II, and III, respectively, that the dietician includes in the

meal. Then the problem can be solved by solving the system

400x  1200y  800z  8800

110x  570y  340z  3380

90x  30y  60z  1020

Using the Gauss-Jordan elimination method, we have
400 1200 800

110 570 340

90 30 60


8800

3380

1020

 1
400 R1


1 3 2

110 570 340

90 30 60


22

3380

1020

 R2  110R1
R3  90R1


1 3 2

0 240 120

0 240 120


22

960

960

 1
240 R2


1 3 2

0 1 1
2

0 240 120


22

4

960

 R1  3R2
R3  240R2


1 0 1

2

0 1 1
2

0 0 0


10

4

0

.

We conclude that the solution is


10 1
2 z 4 1

2 z z


. Letting z  2, we see that one possible solution is a meal

prepared with 9 ounces of Food I, 3 ounces of Food II, and 2 ounces of Food III. Another possible solution is

obtained by letting z  4. In this case, 8 ounces of Food I, 2 ounces of Food II, and 4 ounces of Food III would be

used.

39. Let x , y, and z denote the numbers of ounces of Foods I, II, and III, respectively, that the dietician includes in the

meal. Then the problem can be solved by solving the system

400x  1200y  800z  8800

110x  570y  340z  2160

90x  30y  60z  1020
Using the Gauss-Jordan elimination method, we have

400 1200 800

110 570 340

90 30 60


8800

2160

1020

 1
400 R1


1 3 2

110 570 340

90 30 60


22

2160

1020

 R2  110R1
R3  90R1


1 3 2

0 240 120

0 240 120


22

260

960

 1
240 R2


1 3 2

0 1 1
2

0 240 120


22

13
12

960

 R1  3R2
R3  240R2


1 0 1

2

0 1 1
2

0 0 0


101

4

 13
12

1220

.

The last row implies that 0  1220, which is impossible. We conclude that the system of equations is inconsistent

and has no solution—that is, the dietician cannot prepare a meal from these foods and meet the given requirements.
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40. Let x , y, and z denote the numbers of Pandas, Saint Bernards, and Big Birds produced, respectively. Then we have

the system of equations

15x  2y  25z  4700

30x  35y  25z  65,000

5x  8y  15z  23,400

Using the Gauss-Jordan elimination method, we have


3
2 2 5

2

6 7 5

5 8 15


4700

13,000

23,200

 2
3 R1


1 4

3
5
3

6 7 5

5 8 15


9400

3

13,000

23,200

 R2  6R1
R3  5R1


1 4

3
5
3

0 1 5

0 4
3

20
3


9400

3

5800

23,200

 R2


1 4

3
5
3

0 1 5

0 4
3

20
3


9400

3

5800
23200

3

 R1  4
3 R2

R3  4
3 R2


1 0 5

0 1 5

0 0 0


4600

5800

0

.

Thus, the system has infinitely many solutions of the form 5z  46005z  5800 z. Observe that 5z4600  0

and5z5800  0, that is, 920  z  1160. One possible solution is to make 1000 Big Birds, 800 Saint Bernards,

and 400 Giant Pandas. Another solution is to make 110 Big Birds, 300 Saint Bernards, and 900 Giant Pandas.

41. Let x , y, and z denote the amounts of money invested in stocks, bonds, and a money-market account, respectively.

Then the problem can be solved by solving the system

x  y  z  100,000

6x  4y  2z  500,000

x  y  3z  0

Using the Gauss-Jordan elimination method, we have
1 1 1

6 4 2

1 1 3


100,000

500,000

0

 R2  6R1
R3  R1


1 1 1

0 2 4

0 2 4


100,000

100,000

100,000

  1
2 R2


1 1 1

0 1 2

0 2 4


100,000

50,000

100,000

 R1  R2
R3  2R2


1 0 1

0 1 2

0 0 0


50,000

50,000

0

.

We conclude that the solution is 50000 z 50000 2z z. Therefore, one possible solution for the Garcias is to

invest $10,000 in a money-market account, $60,000 in stocks, and $30,000 in bonds. Another possible solution is

for the Garcias to invest $20,000 in a money-market account, $70,000 in stocks, and $10,000 in bonds.

42. a. x1  x2  200

x1  x5  100

x2  x3  x6  600

x3  x4  200

x4  x5  x6  700
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b.



1 1 0 0 0 0

1 0 0 0 1 0

0 1 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 1



200

100

600

200

700


R2  R1



1 1 0 0 0 0

0 1 0 0 1 0

0 1 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 1



200

100

600

200

700


R3  R2
R1  R2



1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 1

0 0 1 1 0 0

0 0 0 1 1 1



100

100

500

200

700


R4  R3



1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 1

0 0 0 1 1 1

0 0 0 1 1 1



100

100

500

700

700


R5  R4



1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 1

0 0 0 1 1 1

0 0 0 0 0 0



100

100

500

700

0


.

We conclude that the solution is s  100 s  100 s  t  500 s  t  700 s t. Taking s  150 and t  50,

we see that one possible traffic pattern is 250 50 600 800 150 50. Similarly, taking s  200, and t  100,

we see that another possible traffic pattern is 300 100 600 800 200 100.

c. Taking t  0 and s  200, we see that another possible traffic pattern is 300 100 700 900 200 0.

43. a. x1  x6  1700

x1  x2  x7  700

x2  x3  300

x3  x4  400

x4  x5  x7  700

x5  x6  1800

b.



1 0 0 0 0 1 0

1 1 0 0 0 0 1

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0



1700

700

300

400

700

1800


R2  R1



1 0 0 0 0 1 0

0 1 0 0 0 1 1

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0



1700

1000

300

400

700

1800


R2



1 0 0 0 0 1 0

0 1 0 0 0 1 1

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0



1700

1000

300

400

700

1800


R3  R2



1 0 0 0 0 1 0

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 1 1 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0



1700

1000

700

400

700

1800


R3



1 0 0 0 0 1 0

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 1 1 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0



1700

1000

700

400

700

1800


R4  R3



1 0 0 0 0 1 0

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 0 1 0 1 1

0 0 0 1 1 0 1

0 0 0 0 1 1 0



1700

1000

700

1100

700

1800


R5  R4


